
2024/04/10 10:49 1/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

Configuration - backend
configuration, final, property, properties, config, setup

The application uses a Spring boot configuration in the application.properties files. All the
configuration items which are used solely for idm begin with idm. prefix. The configuration items
from the file can be overloaded through a setting agenda in the gui ⇒ a server restart isn't needed for
changing the configuration with idm. prefix, which was one of the main goals. The configuration is
saved in the database. Use ConfigurationService for reading and saving configuration items.

Naming conventions of the configuration items in idm:

idm. - configuration items for the needs of idm
idm.pub. - public configuration items - published on a public rest endpoint (e.g. version)
idm.sec. - system configuration items - published on a secure rest endpoint and available for
configuration by the application administrator. They are used for backend configuration. If
configuration item is confidential, then value is stored in confidential storage and value is not
send to frontend, application logs etc. Items with key password, token, secret are
automatically set as confidential - use it for configuration items defined in property file only.
idm.sec.<module>. or idm.pub.<module>. - configuration items of the given module. Use
ModuleDescriptor#getId() as <module>.
if the name of a configuration item contains thepassword or token chain, the value of the
configuration item is hidden in the rest interface listing (or rather replaced with substitute
characters).
It is better to use constants for keys, e.g.
ConfigurationService.IDM_PUBLIC_PROPERTY_PREFIX +
"core.identity.delete" - using seperator constant in key name suffix is not preferred -
constant can be simply found by key suffix ("ctrl-f" + "core.identity.delete").

Configure environment properties

Application profiles

We are using Spring profiles: Doc.

Start server under defined profile (add JAVA_OPTS parameters):

-Dspring.profiles.active=production

Configured devstack profiles

default - the default profile - configured to db h2. If a developer downloads the project from
Git, the application will run without any other configuration over h2 database with demo data
(by admin user …). Default profile is used for issuing a demo.
dev - developing profile configured to postgresql. In the future, we can move the configuration
itself to special profiles - their combinations (e.g. test+ postgresql or dev + mysql). We will be
able to cover more variants of environment versus database.

https://wiki.czechidm.com/tag/configuration?do=showtag&tag=configuration
https://wiki.czechidm.com/tag/final?do=showtag&tag=final
https://wiki.czechidm.com/tag/property?do=showtag&tag=property
https://wiki.czechidm.com/tag/properties?do=showtag&tag=properties
https://wiki.czechidm.com/tag/config?do=showtag&tag=config
https://wiki.czechidm.com/tag/setup?do=showtag&tag=setup
https://wiki.czechidm.com/devel/documentation/security/dev/confidential-storage
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-properties-and-configuration.html
https://proj.bcvsolutions.eu/ngidm/doku.php?id=help:czechidm_server_install_guide#vyber_profilu_aplikace

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

test - test profile - configured to db h2 and it's used for unit and intergration testing
only. Don't use this profile for test environment - create your own profiles (testing / production).
release - release profile - all modules in CzechIdM repository are included, they are released
together under one version.

External configuration

External configuration uses Spring: Doc.

Start server with external path to configuration (add JAVA_OPTS parameters):

--
spring.config.location=classpath:/default.properties,classpath:/override.pro
perties

Environment properties

Add JAVA_OPTS parameters

Configuration items

Application/ Server

In the application profile (application.properties) and overloadable via ConfigurationService.

Application stage (development, test, production (default))
#
Public properties - available for frontend without authentication (show
information about app, decorators etc.).
#
Application stage - development, test, production.
idm.pub.app.stage=
Application instance / server id - is used for scheduler etc.
Can be defined in property file only! Overidding via ConfigurationService
is not possible for application instance (~ more instanceos on the same
database)
idm.pub.app.instanceId=idm-primary
Frontend server url.
E.g. http://localhost:3000
Default: The first 'idm.pub.security.allowed-origins' configured value is
used (~ backward compatible).
@since 12.0.0
idm.pub.app.frontend.url=
Backend server url.

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://proj.bcvsolutions.eu/ngidm/doku.php?id=help:czechidm_server_install_guide#vyber_profilu_aplikace
https://proj.bcvsolutions.eu/ngidm/doku.php?id=help:czechidm_server_install_guide#vyber_profilu_aplikace

2024/04/10 10:49 3/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

E.g. http://localhost:8080/idm
Default: Url is resolved dynamically from current servlet request.
@since 12.0.0
idm.pub.app.backend.url=

global date format on BE. Used in notification templates, logs, etc. FE
uses localization key 'core:format.date'.
idm.pub.app.format.date=dd.MM.yyyy
global datetime format on BE. Used in notification templates, logs, etc.
FE uses localization key 'core:format.datetime'.
idm.pub.app.format.datetime=dd.MM.yyyy HH:mm
Show identifiers (uuid) in frontend application. Empty value by default =>
identifier is shown, when application 'idm.pub.app.stage' is set to
'development'.
idm.pub.app.show.id=
Show transaction identifiers (uuid) in frontend application.
idm.pub.app.show.transactionId=false
Show role environment in frontend application for roles (table, role
detail, niceLabel, info components, role select).
idm.pub.app.show.environment=true
Show role baseCode in frontend application for roles (table, role detail,
niceLabel, info components, role select).
idm.pub.app.show.role.baseCode=true
Rendered column in role table agenda. Comma is used as separator. Order of
rendered columns is preserved as configured.
Available columns:
- name - role name info card with link to detail
- baseCode - role base code (without environment)
- environment - role environment
- disabled
- description
idm.pub.app.show.role.table.columns=name, baseCode, environment, disabled,
description
Show role catalogue item code in role catalogue tree
idm.pub.app.show.roleCatalogue.tree.code=false
Number of items (pagination) in role catalogue tree in root level. Used on
role select and agenda.
idm.pub.app.show.roleCatalogue.tree.pagination.root.size=25
Number of items (pagination) in role catalogue tree in other levels. Used
on role select and agenda.
idm.pub.app.show.roleCatalogue.tree.pagination.node.size=25
Number of items (pagination) in tree node structure in root level.
idm.pub.app.show.treeNode.tree.pagination.root.size=50
Number of items (pagination) in tree node structure in other levels.
idm.pub.app.show.treeNode.tree.pagination.node.size=50
Available size options for tables in frontend application
idm.pub.app.show.sizeOptions=10, 25, 50, 100
Show buttons for bulk actions in tables (0 = select box will be shown
only).
Count of quick access buttons for bulk actions in tables - the first count
of bulk actions will be shown as button - next action will be rendered in

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

drop down select box.
Bulk action icon is required for quick access button - action without icon
will be rendered in select box.
Bulk action can enforce showing in quick access button (by bulk action
configuration).
idm.pub.app.show.table.quickButton.count=5
Quick button for bulk actions in tables will be included in drop down
select box too (available as button + menu item with text).
Number of selected record is shown in drop down select header.
idm.pub.app.show.table.quickButton.menuIncluded=true
Show default form for newly created user.
Default form can be disabled => at least one configured form projection is
needed.
idm.pub.app.show.identity.formProjection.default=true
Rendered column in identity table agenda. Comma is used as separator.
Order of rendered columns is preserved as configured.
Available columns:
- username - username with link to detail
- entityinfo - identity info card
- lastName
- firstName
- externalCode - personal number
- email
- state
- passwordexpiration - information about identity password epiration
- description
Note: Table in identity agenda can be configured with this property
(common identity table with columns is not specified on FE).
If you want to configure rendered columns for all tables generalized from
identity table (e.g. on role or tree node detail),
you can use FE configuration
https://wiki.czechidm.com/devel/documentation/application_configuration/dev/
frontend
idm.pub.app.show.identity.table.columns=username, lastName, firstName,
externalCode, email, state, description
Rendered columns in user roles agenda (Directly assigned roles). Comma is
used as separator. Order of rendered columns is preserved as configured.
idm.pub.app.show.identityRole.table.columns=role, roleAttributes,
environment, owner, contractPosition, validFrom, validTill, directRole,
automaticRole, incompatibleRoles, description, priority
Rendered columns in role requests in the table for assigned roles. Comma
is used as separator. Order of rendered columns is preserved as configured.
idm.pub.app.show.role.request.table.columns=name, description,
roleAttributes, contractPosition, validFrom, validTill, directRole,
automaticRole, action, priority
If is true, then role-request description will be show on the detail.
Description will hidden if this property will be false and role request
doesn't contains any value in description (can be filled during the
approval process).

2024/04/10 10:49 5/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

idm.pub.app.show.roleRequest.description=true
Show logout content (~ page) with message, after user is logged out.
@since 12.0.0
idm.pub.app.show.logout.content=false
#
Configurable application theme
@since 12.0.0
idm.pub.app.show.theme={ "palette": { "type": "light", "primary": {
"main": "#5cb85c", "contrastText": "#fff" }, "secondary": { "main":
"#f50057", "dark": "#c51162", "contrastText": "#fff" }, "success": {
"main": "#4caf50", "contrastText": "#ffffff" }, "warning": { "main":
"#ff9800", "contrastText": "#fff" }, "action": {"loading": "rgba(255, 255,
255, 0.7)"}, "background": { "default": "#fafafa", "paper": "#fff" }
}, "shape": {"borderRadius": 3} }
#
Configurable application logo (attachment uuid identifier)
Recommended logo size is 165 x 40 px.
@since 12.0.0
idm.pub.app.show.logo=
Footer help link url.
@since 12.0.0
idm.pub.app.show.footer.help.link=https://wiki.czechidm.com/start
Footer service desk link url.
@since 12.0.0
idm.pub.app.show.footer.serviceDesk.link=https://redmine.czechidm.com/projec
ts/czechidmng
#
Private properties - used on backend only.
#
Create demo data at application start.
idm.sec.core.demo.data.enabled=true
Demo data was created - prevent to create demo data duplicitly.
idm.sec.core.demo.data.created=false
Create init data at application start. Init data (product provided roles)
are updated automatically with pruct updates.
Set property to false to disable init data creation and updates.
idm.sec.core.init.data.enabled=true

Change server for asynchronous processing (switch application instance)

@since 11.1.0

Application instance (server) is used for asynchronus processing - for scheduled tasks, asynchronous
long running tasks and events. Instance identifier can be defined in the application profile
(application.properties) by property idm.pub.app.instanceId. When we want to schedule and
process asynchronous tasks and event on other instace (or when one instance shutdown), then we
can switch processing by provided bulk action Change server for asynchronous processing
in configuration agenda:

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

Previous and new instance identifier is required as input parameters. All scheduled tasks and all
created (~ not processed) asynchronous long running tasks and events will be moved from previous
to new instance and will be processed on new instance (server).

Bulk action is available for logged user with required authorities and permissions:

CONFIGURATION_UPDATE - configuration property contains instance for asynchronous
processing will be changed ⇒ authority and UPDATE base permission for property
idm.sec.core.event.asynchronous.instanceId is required.
SCHEDULER_UPDATE - scheduled tasks and created (~ not processed) asynchronous long
running tasks will be changed.
ENTITYEVENT_UPDATE - created (~ not processed) asynchronous events will be changed.

Jpa

In the application profile (application.properties)

ZonedDateTime is stored in UTC
spring.jpa.properties.hibernate.jdbc.time_zone=UTC
Driver (e.g. postgres) does not support contextual LOB creation
spring.jpa.properties.hibernate.jdbc.lob.non_contextual_creation=true
audit table suffixes
spring.jpa.properties.org.hibernate.envers.audit_table_suffix=_a
spring.jpa.properties.org.hibernate.envers.modified_flag_suffix=_m
modified flag for all audited columns
spring.jpa.properties.org.hibernate.envers.global_with_modified_flag=true
prevent to modify attributes created, creator etc.

2024/04/10 10:49 7/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

spring.jpa.properties.org.hibernate.envers.audit_strategy=eu.bcvsolutions.id
m.core.model.repository.listener.IdmAuditStrategy
spring.jpa.properties.hibernate.session_factory.interceptor=eu.bcvsolutions.
idm.core.model.repository.listener.AuditableInterceptor
enable / disable audit (envers)
spring.jpa.properties.hibernate.listeners.envers.autoRegister=true
Spring boot 2 changed default to true, but we are using IDENTITY
identifier generators for mssql database.
spring.jpa.hibernate.use-new-id-generator-mappings=false
#
DB ddl auto generation by hibernate is disabled - flyway database
migration is used
spring.jpa.generate-ddl=false
spring.jpa.hibernate.ddl-auto=none
#
DATASOURCE (DataSourceAutoConfiguration & DataSourceProperties)
spring.datasource.url=jdbc:postgresql://localhost:5432/bcv_idm_storage
spring.datasource.username=*****
spring.datasource.password=*****
spring.datasource.driver-class-name=org.postgresql.Driver
test connection, when is used from pool (reconnect after db is restarted)
spring.datasource.testOnBorrow=true
spring.datasource.validationQuery=SELECT 1
Enlarge pool size by default. This property should be revised for each
project. Size should be configured by task and event thread pool size -
should be higher than sum of pool sizes.
spring.datasource.maximumPoolSize=50

Additional datasources

As of version 12.2.0 we are no longer using spring-boot datasource autoconfiguration. Instead, we
define datasources ourseves. This decision was motivated by our need for multiple independent
datasources with separated connection pools, which was previously not possible.

Notable changes:

There are by default two datasources configured

datasource - default datasource, which is being used for almost all database communication
(Flyway, JPA repositories)
loggingDatasource - This datasource is used by our database logging appender to write logging
messages, when databes appender is enabled. The reason why this is done by separate
datasource is to prevent database logging to hog database connections and hinder the
application performance

Configuration properties, that have changed with introduction of additional datasources:

spring.datasource.url → spring.datasource.jdbcUrl

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

spring.datasource.hikari.* → spring.datasource.*

Both datasources are required for the app to start.

By default, both datasources are configured for H2 in-memory database
If you specify property spring.datasource.jdbcUrl, IdM will no longer use in memory database for
main datasource and instead it will configure connection using spring.datasource.* properties
The same goes for loggingDatasource, which is configured using spring.logging-datasource.*
properties

===== Datasource configuration properties

CzechIdM uses HikariCP to manage connections. All possible configuration properties for each
datasource can be seen as fields in
https://github.com/openbouquet/HikariCP/blob/master/src/main/java/com/zaxxer/hikari/HikariConfig.ja
va class.

Developer

If you are using EntityManager in your code, you will run into the issue with autowiring. In
order to fix it, you need to explicitly specify, which EntityManager bean you want spring to
autowire. You can use

@CoreEntityManager` annotation, if you want to autowire main application datasource (in
most cases you want to use this
@Qualifier("coreEntityManager") annotation, if you want to autowire main application
datasource and do not want to explicitly define dependency on core-api module

JNDI datasource

Firstly is needed to configure JNDI resource in the J2EE server. Here is a configuration snippet for
Tomcat. It assumes PostgreSQL as the database:

<Context antiJARLocking="true" path="/idm">
 <Resource
 name="PostgresDS"
 auth="Container"
 type="javax.sql.DataSource"
 username="*****"
 password="*****"
 driverClassName="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/bcv_idm_storage"
 maxActive="8"
 maxIdle="4"/>
</Context>

In the application profile (application.properties), update datasource properties:

https://github.com/openbouquet/HikariCP/blob/master/src/main/java/com/zaxxer/hikari/HikariConfig.java
https://github.com/openbouquet/HikariCP/blob/master/src/main/java/com/zaxxer/hikari/HikariConfig.java

2024/04/10 10:49 9/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

JNDI location of the datasource. Class, url, username & password are
ignored when set.
spring.datasource.jndi-name=PostgresDS

In logback-spring.xml configuration (by profile, if db appender is used), update datasource
properties:

...
<springProperty name="spring.datasource.jndi-name"
source="spring.datasource.jndi-name"/>

<appender name="DB"
class="eu.bcvsolutions.idm.core.exception.IdmDbAppender">
 <connectionSource class="ch.qos.logback.core.db.JNDIConnectionSource">
 <!-- please note the "java:comp/env/" prefix -->
 <jndiLocation>java:comp/env/${spring.datasource.jndi-
name}</jndiLocation>
 </connectionSource>
</appender>
...

Using SSL

Configure PostgreSQL server, documentation:1.
https://jdbc.postgresql.org/documentation/head/ssl.html#ssl-server
Short example: https://www.howtoforge.com/postgresql-ssl-certificates2.
Create new truststore specifically for the CzechIdM. When starting your Java application you3.
must specify this keystore and password to use -
Djavax.net.ssl.trustStore=path/to/mystore -
Djavax.net.ssl.trustStorePassword=mypassword. For testing purposes, it is possible to
set truststore password to changeit which is the Java default - you then have to specify only
path to the truststore.

It is technically possible to import certificate into the (systemwide) Java cacerts
truststore, but this poses significant risk.

While updating custom java deployment:

Not being a "visible" part of IdM deployment, one can easily omit migrating
certificates into the new Java cacerts truststore. In this case, IdM will not be
able to connect anywhere where the SSL connection is used.

While updating Java OS packages:

Nowadays, most Linux distros offering packages with OpenJDK, OracleJDK, … use
"extracted" truststore, which is basically cacerts truststore located somewhere
under /etc/ssl/… and available to every Java distribution on the system. This
truststore is constructed by an utility update-ca-trust from a list of CA
certificates located elsewhere on the filesystem. When updating packages with

https://jdbc.postgresql.org/documentation/head/ssl.html#ssl-server
https://www.howtoforge.com/postgresql-ssl-certificates

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

JDK, ca-certs and such, the update-ca-trust can be invoked, effectively
rewriting the extracted truststore. In this case, any changes made only to the
truststore will be lost.

In the application profile (application.properties)

Update datasource properties:

add ssl usage flag, see
https://jdbc.postgresql.org/documentation/head/connect.html
spring.datasource.url=jdbc:postgresql://localhost:5432/bcv_idm_storage?ssl=t
rue

Cache

Cache is used for reading configuration values. Value in cache is cleared by an active (save, delete)
operation.

In the application profile (application.properties):

Disable cache
If you are debugging some of code and are you figuring, something is wrong
with the cache, then you can turn the cache off with property.
#spring.cache.type=none
#
Clusterred cache settings
#idm.sec.cache.terracota.url=localhost:9410,localhost:9420
idm.sec.cache.terracota.resource.name=main
idm.sec.cache.terracota.resource.pool.name=resource-pool
Size in MB
idm.sec.cache.terracota.resource.pool.size=32

Attachment storage

DefaultAttachmentManager stores binary files on file system. Binary files can be attached to any
entity, which implements AttachableEntity interface, read more.

In the application profile (application.properties):

Max file size of uploaded file. Values can use the suffixed "MB" or "KB"
to indicate a Megabyte or Kilobyte size.
Application server (e.g. Tomcat "maxSwallowSize" connector parameter) has
to be set properly too (e.g. <Connector port="8080" maxSwallowSize="-1" ...)
spring.servlet.multipart.max-file-size=100MB
spring.servlet.multipart.max-request-size=100MB

https://wiki.czechidm.com/devel/documentation/modules_rpt/dev/attachment_manager

2024/04/10 10:49 11/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

In the application profile (application.properties) and overloadable via ConfigurationService:

#
Attachment manager
#
attachments will be stored under this path.
new directories for attachment will be created in this folder (permissions
has to be added)
System.getProperty("user.home")/idm_data will be used if no path is given
idm.sec.core.attachment.storagePath=/opt/data
#
temporary files for attachment processing (e.g. temp files for download /
upload)
getStoragePath()/temp will be used if no path is given
idm.sec.core.attachment.tempPath=/opt/data/temp
#
temporary file time to live in milliseconds
older temporary files will be purged, default 14 days
Temporary file is used mainly for upload files internaly. When upload is
complete, then temporary file is moved into normal IdM attachment (~
temporary file is not reachable, after user session ends).
idm.sec.core.attachment.tempTtl=1209600000

Activiti workflow

String boot properties for Activiti workflow engine
#
https://github.com/Activiti/Activiti/blob/master/modules/activiti-spring-boo
t/spring-boot-starters/activiti-spring-boot-starter-
basic/src/main/java/org/activiti/spring/boot/ActivitiProperties.java
let activiti to manage their schema
spring.activiti.databaseSchemaUpdate=true
disable automatic jpa entities persisting - dto usage is prefered
spring.activiti.jpaEnabled=false
Automatic process deployment
spring.activiti.checkProcessDefinitions=true
path to automatically deployed definitions - should be the same in all
modules
more locations can be given e.g.
classpath*:eu/bcvsolutions/idm/workflow/,classpath:external/config/wf
resources in the latest location has the highest priority (last wins) -
workflow definitions are prioritized by file name, don't change definition's
file name, when you want to override some core workflow definition.
put resource, which has to override some core resource to last location
spring.activiti.processDefinitionLocationPrefix=classpath*:eu/bcvsolutions/i
dm/workflow/
definitions name pattern - subfolders can be used
spring.activiti.processDefinitionLocationSuffixes=**/**.bpmn20.xml

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

Security

In the application profile (application.properties) and overloadable via ConfigurationService.

allowed origins for FE
idm.pub.security.allowed-origins=http://localhost:3000,http://localhost
auth token
- expiration in milis
idm.sec.security.jwt.expirationTimeout=36000000
- secret jwt password
idm.sec.security.jwt.secret.token=idmSecret
- extend JWT token expiration period on each successful request
idm.sec.security.jwt.token.extend.expiration=true
recaptcha
- recaptchaservice endpoint
idm.sec.security.recaptcha.url=https://www.google.com/recaptcha/api/siteveri
fy
- secret key, can be generated here https://www.google.com/recaptcha/admin
(generate V2 checkbox)
- test secret key:
https://developers.google.com/recaptcha/docs/faq#id-like-to-run-automated-te
sts-with-recaptcha-v2-what-should-i-do
idm.sec.security.recaptcha.secretKey=xxx
Proxy configuration for reCAPTCHA (since version 12.2.5)
idm.sec.security.recaptcha.proxy=12.34.56.78:1234

Allowed-origins defines, which resources can use backend API methods. e.g. When there is a web
server serving as reverse proxy on the same server as BE, the http://localhost:3000 may be the right
value.

Flyway

In the application profile (application.properties)

Enable flyway migrations.
@see
https://proj.bcvsolutions.eu/ngidm/doku.php?id=navrh:databazove_scripty
flyway.enabled=false

Module configuration (flyway-core.properties)

Core Flyway configuration
#
Whether to automatically call baseline when migrate is executed against a
non-empty schema with no metadata table.
This schema will then be baselined with the baselineVersion before
executing the migrations.

2024/04/10 10:49 13/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

Only migrations above baselineVersion will then be applied.
This is useful for initial Flyway production deployments on projects with
an existing DB.
Be careful when enabling this as it removes the safety net that ensures
Flyway does not migrate the wrong database in case of a configuration
mistake!
flyway.core.baselineOnMigrate=true
#
The name of Flyway's metadata table (default **schema_version**).
By default (single-schema mode) the metadata table is placed in the
default schema for the connection provided by the datasource.
flyway.core.table=idm_schema_version_core
#
Comma-separated list of locations to scan recursively for migrations. The
location type is determined by its prefix.
Unprefixed locations or locations starting with classpath: point to a
package on the classpath and may contain both sql and java-based migrations.
Locations starting with filesystem: point to a directory on the filesystem
and may only contain sql migrations.
IdmFlywayMigrationStrategy resolves used jdbc database dynamically -
${dbName} in location could be used.
flyway.core.locations=classpath:eu/bcvsolutions/idm/core/sql/${dbName}

Module configuration

Information about module can be defined in property file (module-<module>.properties - e.g. module-
core.properties). This property file is loaded by PropertyModuleDescriptor. Module properties
are not editable through ConfigurationService (idm.pub. prefix is not used).

mapping pom.xml properties by default
add custom properties if needed
#
module version
module.<module>.build.version=@project.version@
build number
module.<module>.build.number=@buildNumber@
module.<module>.build.timestamp=@timestamp@
module vendor
module.<module>.build.vendor=@project.organization.name@
module.<module>.build.vendorUrl=@project.organization.url@
module.<module>.build.vendorEmail=info@bcvsolutions.eu
module description
module.<module>.build.name=@project.name@
module.<module>.build.description=@project.description@

Swagger

In the application profile (application.properties)

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

Swagger config
enable swagger endpoint (can be disabled for development etc.)
springfox.documentation.swagger.enabled=true
endpoint with exposed documentations. Documentations are exposed by module
e.g. <server>/api/doc?group=core
springfox.documentation.swagger.v2.path=/api/doc
#
for static documentation generation puprose => internal usage mainly in
test stage. Swagger specification on then rest endpoint is exported to given
file e.g. <module>/target/swagger/swagger.json. Properties with @ are
automatically filled from pom.xml properties.
output directory and filename for swagger export - other build parts are
dependent on this.
springfox.documentation.swagger.outputDir=@swagger.output.dir@
springfox.documentation.swagger.outputFilename=@swagger.output.filename@

Emailer

In the application profile (application.properties) - overloadable via ConfigurationService.

enable test mode - in this mode, emails are not send
idm.sec.core.emailer.test.enabled=false
 # http://camel.apache.org/mail.html
idm.sec.core.emailer.protocol=smtps
idm.sec.core.emailer.host=smtp.gmail.com
idm.sec.core.emailer.port=465
idm.sec.core.emailer.username=servis.bcvsolutions@gmail.com
idm.sec.core.emailer.password=*****
The FROM email address.
idm.sec.core.emailer.from=idm@bcvsolutions.eu

Templates

In the application profile (application.properties) - overloadable via ConfigurationService.

Templates location
more locations can be given e.g.
classpath*:/eu/bcvsolutions/idm/template/,classpath*:/external/templates/
resources in the latest location has the highest priority (last wins).
Resources are prioritized - put resource, which has to override some core
resource to last location
Locations can be configured
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.h
tml#resources
idm.sec.core.notification.template.folder=classpath*:/eu/bcvsolutions/idm/te
mplate/

2024/04/10 10:49 15/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

idm.sec.core.notification.template.fileSuffix=**/**.xml # template suffix

Scripts

In the application profile (application.properties) - overloadable via ConfigurationService.

Scripts location
more locations can be given e.g.
classpath*:/eu/bcvsolutions/idm/scripts/,classpath*:/external/scripts/
resources in the latest location has the highest priority (last wins).
Resources are prioritized - put resource, which has to override some core
resource to last location
Locations can be configured
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.h
tml#resources
idm.sec.core.script.folder=classpath*:/eu/bcvsolutions/idm/scripts/
idm.sec.core.script.fileSuffix=**/**.xml

Scheduler

In the application profile (application.properties).

Enable scheduler. Enabled by default
scheduler.enabled=true
Task queue processing period (ms). Default 1000ms.
scheduler.task.queue.process=1000
Application settings for QUARTZ (for current mvn profile)
scheduler.properties.location=/quartz.properties
Task executor core pool size. Uses CPU count as default.
scheduler.task.executor.corePoolSize=
Task executor max pool size. Uses CPU corePoolSize * 2 as default.
maxPoolSize has to be higher than corePoolSize (IllegalArgumentException
is thrown otherwise).
When queueCapacity is full, then new threads are created from corePoolSize
to maxPoolSize.
scheduler.task.executor.maxPoolSize=
Waiting tasks to be processed. Uses 20 as default. {@link
LinkedBlockingQueue} is used for queue => capacity is initialized
dynamically.
{@link AbotrPolicy} is set for rejected tasks - reject exception has to be
processed by a caller ({@link LongRunningTaskManager}).
scheduler.task.executor.queueCapacity=20
Thread priority for threads in event executor pool - 5 by default
(normal).
scheduler.task.executor.threadPriority=
Asynchronous task processing is stopped.
Asynchronous task processing is stopped, when instance for processing is
switched => prevent to process asynchronous task in the meantime.

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

Asynchronous task processing can be stopped for testing or debugging
purposes.
Asynchronous task are still created in queue, but they are not processed
automatically - task can be executed manually from ui.
idm.sec.core.scheduler.task.asynchronous.stopProcessing=false
Event queue processing period (ms). Period to read prepared (~created)
asynchronous entity events from queue.
Events are processed in batch configured by property
'idm.sec.core.event.asynchronous.batchSize'. If you events are processed
quickly (~provisioning on your environment is quick), then batch size can be
higher or this property can be lower.
Default 500ms.
scheduler.event.queue.process=500
Event executor core pool size. Uses CPU count + 1 as default.
scheduler.event.executor.corePoolSize=
Event executor max pool size. Uses CPU corePoolSize * 2 as default.
maxPoolSize has to be higher than corePoolSize (IllegalArgumentException
is thrown otherwise).
When queueCapacity is full, then new threads are created from corePoolSize
to maxPoolSize.
scheduler.event.executor.maxPoolSize=
Waiting events to be processed. Uses 50 as default - prevent to prepare
events repetitively and use additional threads till maxPoolSize. {@link
LinkedBlockingQueue} is used for queue => capacity is initialized
dynamically.
{@link AbotrPolicy} is set for rejected tasks - reject exception has to be
processed by a caller ({@link EntityEventManager}).
scheduler.event.executor.queueCapacity=50
Thread priority for threads in event executor pool - 6 by default (a
little higher priority than normal 5).
scheduler.event.executor.threadPriority=6

Identity

In the application profile (application.properties) - overloadable via ConfigurationService.

supports delete identity. Needed on FE (=> public) to render available
bulk action in table
@deprecated @since 10.6.0 - action can be disabled by bulk action
configurable api - use 'idm.sec.core.bulk-action.identity-delete-bulk-
action.enabled=false'.
idm.pub.core.identity.delete=true
#
default password change type for custom users, one of values:
DISABLED - password change is disable
ALL_ONLY - users can change passwords only for all accounts
CUSTOM - users can choose for which accounts change password
Needed on FE (=> public)

2024/04/10 10:49 17/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

idm.pub.core.identity.passwordChange=CUSTOM
#
required old password for change password.
Needed on FE (=> public)
idm.pub.core.identity.passwordChange.requireOldPassword=true
#
change password to idm from public pages.
true - change to IdM and all system
false - change to all system except IdM
Needed on FE (=> public)
idm.pub.core.identity.passwordChange.public.idm.enabled=true
#
Skip identity dashboard content - show full detail directly (link from
table or from info component)
Needed on FE (=> public)
idm.pub.core.identity.dashboard.skip=
#
Create default identity's contract, when identity is created.
Skipped in synchronizations - contract synchronization should be provided.
idm.sec.core.identity.create.defaultContract.enabled=true
Creates default identity's contract with configured position name.
idm.sec.core.identity.create.defaultContract.position=Default
Creates default identity's contract with configured state. Valid contract
will be crated by default, other possible values:
EXCLUDED - Excluded from evidence - remains valid, but roles assigned for
this contract are not added for logged identity.
DISABLED - Invalid by user - not changed by dates.
idm.sec.core.identity.create.defaultContract.state=
Number of days related to current date - will be used for set contract
valid till date (current date + expiration in days = valid till).
Contact valid till will not be set by default (~ contract expiration is
not configured by default).
idm.sec.core.identity.create.defaultContract.expiration=
#
Profile image max file size in readable string format (e.g. 200KB).
idm.sec.core.identity.profile.image.max-file-size=512KB

Identity contract slice

In the application profile (application.properties) - overloadable via ConfigurationService.

The protected interval can be set using the property
idm.sec.core.contract-slice.protection-interval, where the value is the
number of days.
If the number of days between the termination of the contract and its
renewal in the following time slice is less than or equal to the number
of days set in the protection interval, then the date of the contract
validity from the following slice will be used instead of the date of
termination of the contract from the currently valid slice.

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

idm.sec.core.contract-slice.protection-interval=0

Role

In the application profile (application.properties) - overloadable via ConfigurationService.

#
Default user role will be added automatically, after an identity is logged
in
could contains default authorities and authority policies configuration
for adding autocomplete or all record read permission etc.
Role full code should be given (should contain environment, if it is
used).
Role authorities are updated automatically, when new IdM version is
installed.
idm.sec.core.role.default=userRole
#
Admin user role
Role full code should be given (should contain environment, if it is
used).
Role authorities are updated automatically, when new IdM version is
installed.
idm.sec.core.role.admin=superAdminRole
#
Helpdesk user role
Role full code should be given (should contain environment, if it is
used).
Role authorities are updated automatically, when new IdM version is
installed.
idm.sec.core.role.helpdesk=helpdeskRole
#
User manager role
Role full code should be given (should contain environment, if it is
used).
Role authorities are updated automatically, when new IdM version is
installed.
idm.sec.core.role.userManager=userManagerRole
#
Role manager role - role guarantee
Role full code should be given (should contain environment, if it is
used).
Role authorities are updated automatically, when new IdM version is
installed.
idm.sec.core.role.roleManager=roleManagerRole
#
Virtual system implementer role - product provided role for implementers
(approve vs request etc.).
Role full code should be given (should contain environment, if it is

2024/04/10 10:49 19/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

used).
Role authorities are updated automatically, when new IdM version is
installed.
idm.sec.vs.role.implementer=virtualSystemImplementerRole
#
Separator for the suffix with environment used in role code.
Look out: when separator is changed, then all roles should be updated
(manually from ui, by scripted LRT or by change script).
idm.sec.core.role.codeEnvironmentSeperator=|

Tree

Tree structures configuration properties.

In the application profile (application.properties) - overloadable via ConfigurationService.

Default tree type (uuid or code). More in Default organizational structure
doc.
idm.sec.core.tree.defaultType=
Default tree node (uuid) - is used, when default contract is created. More
in Contractual relationship doc.
idm.sec.core.tree.defaultNode=

Internal properties used for tree indexing (forest index) - holds index state:

forest index is valid. Is set to false, when index exception occurs and
tree index has to be rebuild
idm.sec.core.treeType.<tree-code>.valid=true
rebuild index in progress (true). When tree type index rebuild is in
progress, then tree node cannot be created / updated / deleted.
idm.sec.core.treeType.<tree-code>.rebuild=false

Entity events

In the application profile (application.properties) - overloadable via ConfigurationService.

disable / enable asynchronous event processing. Events will be executed
synchronously, if it's disabled. Enabled by default.
idm.sec.core.event.asynchronous.enabled=true
Asynchronous event processing is stopped.
Event processing is stopped, when instance for processing is switched =>
prevent to process instances in the meantime.
Asynchronous event processing can be disabled for testing or debugging
purposes.
Events are still created in queue, but they are not processed.
idm.sec.core.event.asynchronous.stopProcessing=false
Asynchronous events will be executed on server instance with id. Default
is the same as {@link ConfigurationService#getInstanceId()} (current server

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

instance).
idm.sec.core.event.asynchronous.instanceId=
Asynchronous events will be executed in batch - batch will be split for
event with HIGH / NORMAL priority in 70% HIGH / 30% NORMAL.
If you events are processed quickly (~provisioning on your environment is
quick), then batch size can be higher (in combination with higher
'scheduler.event.queue.process' property).
idm.sec.core.event.asynchronous.batchSize=15

Entity event processors

In the application profile (application.properties) - overloadable via ConfigurationService.
Every processor could have his own configuration properties under prefix:

disable / enable event procesor
idm.sec.<module>.processor.<name>.enabled=true
override event types for given processor
idm.sec.<module>.processor.<name>.eventTypes=CREATE,UPDATE

Where <module> is processor's module and <name> is processor's name (see overridable processor's
methods). Filled configuration properties will be shown on processor's content.

Common configuration properties for all processors:

enabled - on / off
eventTypes - list of event types (separated by comma) to which given processor reacts
order - comming soon

Exists processors configuration: implemented proccessors.

Bulk actions

@since 10.6.0

In the application profile (application.properties) - overloadable via ConfigurationService.
Every bulk action could have his own configuration properties under prefix:

disable / enable bulk action
idm.sec.<module>.bulk-action.<name>.enabled=true

Where <module> is bulk action module and <name> is bulk action name.

Common configuration properties for all bulk actions:

enabled - true / false.
order - bulk action order (for FE only). Action provided default order in implementation.
icon - Icon on frontend (for FE only). Icon libraries can be used: component:, fa:, glyph:.

https://wiki.czechidm.com/devel/documentation/architecture/dev/events#implemented_processors
https://wiki.czechidm.com/devel/documentation/architecture/dev/events#implemented_processors

2024/04/10 10:49 21/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

Icon is loaded from FE locale by default.
level - bulk action level ~ button and icon color (for FE only). Available options: success
(default value), info, warning, error.
deleteAction - true / false - Action deletes records (for FE only). Action will be in bottom
menu section, is action is included in menu.
quickButton - true / false - Render action as quick button (for FE only). The first available
actions are rendered as buttons, if icon is defined. This configuration enforces rendering action
as quick button (order is ignored).
quickButtonable - true / false - Action can be included in quick buttons on FE. Set to false,
when button should be not rendered ⇒ action will be rendendered in drop down menu only.

Workflow settings for approval of change user roles

WF
Approve by manager
idm.sec.core.wf.approval.manager.enabled=false
Approve by security department
idm.sec.core.wf.approval.security.enabled=false
idm.sec.core.wf.approval.security.role=Security
Approve by helpdesk department
idm.sec.core.wf.approval.helpdesk.enabled=false
idm.sec.core.wf.approval.helpdesk.role=Helpdesk
Approve by usermanager department
idm.sec.core.wf.approval.usermanager.enabled=false
idm.sec.core.wf.approval.usermanager.role=Usermanager
Approve a role incompatibilities - If some incompatibilities are found in
request, then this approving will be executed.
idm.sec.core.wf.approval.incompatibility.enabled=true
idm.sec.core.wf.approval.incompatibility.role=Incompatibility
Approval wf by role priority
idm.sec.core.wf.role.approval.1=approve-role-by-manager
idm.sec.core.wf.role.approval.2=approve-role-by-guarantee
idm.sec.core.wf.role.approval.3=approve-role-by-guarantee-security
Approval wf for unassign role (one remove WF for whole application)
idm.sec.core.wf.role.approval.remove=approve-remove-role-by-manager
Approve a change on the role - Is uses in the request of changing a role.
In the request to create new role is also used.
idm.sec.core.wf.approval.role-change.role=
#
Default main WF for approve all roles.
idm.sec.core.processor.role-request-approval-processor.wf=approve-identity-
change-permissions

Universal requests

Universal requests
Role
idm.pub.core.request.idm-role.enabled=false
Defines type of guarantee. Requests will be approving only by guarantee

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

with this type.
If returns null, then all guarantees will be used for approving (no
limitations).
idm.sec.core.request.idm-role.approval.guarantee-type=

Notification from Workflow

Global property that allow disable or enable sending notification from WF
idm.sec.core.wf.notification.send=false
Enable sending notification of changing roles to user, whose account will
be modified
idm.sec.core.wf.notification.applicant.enabled=false
Enable sending notification of changing roles to user, who made request
idm.sec.core.wf.notification.implementer.enabled=true

Confidential storage

Properties is not overloadable via ConfigurationService. For more info see

Cipher secret key for crypt values in confidential storage
for crypt values is used secretKey - secret.key
Can be empty => confidential storage will not be crypted, application
cannot be used in production (dev, test only).
cipher.crypt.secret.key=
or secretKey defined in the external file - secret.keyPath
cipher.crypt.secret.keyPath=/path/to/key

Entity filters

In the application profile (application.properties) - overloadable via ConfigurationService.

Enable / disable check filter is properly registered, when filter is used
(by entity and property name).
Throws exception, when unrecognized filter is used.
idm.sec.core.filter.check.supported.enabled=true
Check count of values exceeded given maximum.
Related to database count of query parameters (e.g. Oracle = {@code 1000},
MSSql = {@code 2100}).
Throws exception, when size is exceeded. Set to {@code -1} to disable this
check.
idm.sec.core.filter.check.size.maximum=500

Every registered filter could have his own configuration properties under prefix:

enable / disable filter - enabled by default. When filter is disabled and

https://wiki.czechidm.com/devel/documentation/security/dev/confidential-storage

2024/04/10 10:49 23/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

property is filled in filter, then ''disjunction'' criteria is added => no
data will be returned
idm.sec.<module>.filter.<entity>.<name>.enabled=true
filter implementation
idm.sec.<module>.filter.<entity>.<name>.impl=<beanName>

Where:

<module> is filter's module - overriden module has to be used (e.g. default filter is in core
module, then core module identifier has to be used)
<entity> is entity class simple name - filter will be applied to this domain type (e.g.
IdmIdentity)
<name> the name of the property name during which the filter is actively evaluated, if it is
stated in the filtering criteria (⇒ get parameter)
<beanName> is filter's bean name - see implemented filters

Common configuration properties for all filters:

enabled - on / off
impl - contains implementation (Spring bean name) of given filter. When property of given
<name> will be set for filter, then this implementation will be used for filtering. New module
could register new filter for defined entity and name - by this configuration one of provided
implementation will be selected and used.

Exists filters configuration: implemented filters.

Notification senders

In the application profile (application.properties) - overloadable via ConfigurationService.
Senders could have his own configuration properties under prefix:

sender implementation
idm.sec.<module>.notification-sender.<notificationType>.impl=<beanName>

Where:

<module> is senders's module - overriden module has to be used (e.g. default sender is in core
module, then core module identifier has to be used)
<notificationType> is notification type, which has to be supported by configured sender by
«beanName»

Common configuration properties for all senders:

impl - contains implementation (Spring bean name) of given sender. This sender
implementation will be used for sending notifications with <notificationType>. New module
could register new sender implementation for notification types (even new notification type can
be created) - by this configuration one of provided implementation will be selected and used.

Read more about notification manager.

https://wiki.czechidm.com/devel/documentation/architecture/dev/filters#implemented_filters
https://wiki.czechidm.com/devel/documentation/architecture/dev/filters#implemented_filters
https://wiki.czechidm.com/devel/documentation/notifications/dev/notification_manager

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

Authentication

UUID of system, against which to user will be authenticated. This authentication is from version 10.4.0
deprecated.

ID system against which to authenticate
idm.sec.security.auth.system=

Authentication against multiple system wich to user will be authenticated (since 10.4.0) - ID or Code
can be used:

idm.sec.acc.security.auth.order1.system=
idm.sec.acc.security.auth.order2.system=

Maximum system for authentication can be set with the property:

idm.sec.acc.security.auth.maximumSystemCount=50

More about authenticator can be found there.

Authentication filters

In the application profile (application.properties) - overloadable via ConfigurationService.
Authentication filter could have his own configuration properties under prefix:

enable/ disable filter - enabled by default or by filter implementation.
idm.sec.<module>.authentication-filter.<name>.enabled=true

Where:

<module> is filter's module - overriden module has to be used (e.g. default filter is in core
module, then core module identifier has to be used)
<name> is filter's name - see overridable filter's #getName() method. Filter name could be the
same as bean name in context.

Common configuration properties for all filters:

enabled - on / off

SSO authentication filter

Single-Sign-On mechanism can be configured with following properties:

Allow SSO authentication
idm.sec.core.authentication-filter.core-sso-authentication-
filter.enabled=false

https://wiki.czechidm.com/devel/documentation/security/dev/authentication
https://wiki.czechidm.com/devel/documentation/security/dev/security#sso

2024/04/10 10:49 25/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

The name of the header which contains the login of the authenticated user
idm.sec.core.authentication-filter.core-sso-authentication-filter.header-
name=REMOTE_USER
The suffixes to remove from the login - usually domains
idm.sec.core.authentication-filter.core-sso-authentication-filter.uid-
suffixes=
The uids that can't be authenticated by SSO
idm.sec.core.authentication-filter.core-sso-authentication-filter.forbidden-
uids=

Remote user authentication filter

Login into IdM by preset request remote user by servlet container can be configured with following
properties:

Allow remote user authentication
idm.sec.core.authentication-filter.core-remote-user-authentication-
filter.enabled=false
The suffixes to remove from the login - usually domains
idm.sec.core.authentication-filter.core-remote-user-authentication-
filter.uid-suffixes=
The uids that can't be authenticated by SSO
idm.sec.core.authentication-filter.core-remote-user-authentication-
filter.forbidden-uids=

This authentication filter reuses SSO authentication filter behavior above (uid-suffixes,
forbidden-uids), but application administrator can be logged by this filter (identity with
APP_ADMIN authority).

Two-factor authentication

Two-factor authentication can be configured in the application profile (application.properties) with
following properties:

Verification secret length
totp.secret.length=32
Time Period ~ period to generate new authentication code
totp.time.period=30
Time Discrepancy - number of past (but still valid) authentication codes
(e.g. when code is sent by notification, then user could need more time to
fill it into CzechIdM)
totp.time.discrepancy=1

CAS authentication filter

@since 12.0.0 CAS authentication can be configured with following properties:

https://wiki.czechidm.com/devel/documentation/security/dev/security#two-factor_authentication
https://wiki.czechidm.com/devel/documentation/security/dev/security#cas_authentication

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

Enable authentication via CAS. If enabled, "idm.sec.core.cas.url" become
mandatory and must be set for SSO authentication via CAS to work. Default:
false
idm.pub.core.cas.enabled=false
Other properties
Base URL where CAS is accessible. Syntax of this field is
https://hostname-of-CAS/URI.
idm.sec.core.cas.url=
IdM service name configured as service on CAS server.
When service is configured, then login and logout redirect urls, should be
defined directly in CAS service configuration.
Default: service name for login / logout is created dynamically by BE
server url (recommended).
idm.sec.core.cas.service=
Suffix which is, in effect, appended to idm.sec.core.cas.url. Resulting
URL is used for login operation in CAS. It must start with slash (eg.
/login).
idm.sec.core.cas.login-path=/login
Suffix which is appended to idm.sec.core.cas.url. Resulting URL is used
for single sign-out operation. It must start with slash (eg. /logout).
idm.sec.core.cas.logout-path=/logout
Ticket can be given as request parameter (recommended, configured by
default).
idm.sec.core.cas.parameter-name=ticket
Header name in which CAS sends the ticket value. Ticket can be given as
request header. Not configured by default.
idm.sec.core.cas.header-name=
Path to CzechIdM for the HTTP Referer header used by CAS while redirecting
back to application. This value is concatenated with CAS ticket to form
Referer header. Syntax of this field is
https://hostname-of-CzechIdM/URI/?ticket=. Not configured by default.
idm.sec.core.cas.header-prefix=

OIDC authentication

@since 13.1.0 OIDC authentication can be configured with following properties:

Enable authentication via OIDC when false IDM will return 503
SERVICE_UNAVAILABLE on enpoints used for OICD auth, and ignore any Bearer
token. Default: false
idm.pub.core.oidc.enabled=false
REQIRED configuration
client-id confugured in CAS Service
idm.sec.core.oidc.client-id=
client-secret confugured in CAS Service
idm.sec.core.oidc.client-secret=
Base URL where OICD provider is accessible. Syntax of this field is
https://hostname-of-OICD/URI.

https://wiki.czechidm.com/devel/documentation/security/dev/security#oidc_authentication
https://wiki.czechidm.com/devel/documentation/security/dev/security#oidc_authentication

2024/04/10 10:49 27/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

idm.sec.core.oidc.url=

OPTIONAL configuration
idm.sec.core.oidc.login-path=/authorize
idm.sec.core.oidc.logout-path=/logout
idm.sec.core.oidc.token-path=/token

​​​​​# Configuration for spring.security most is gotten from auto-discover
endpoint (${idm.sec.core.oidc.url}/.well-known/openid-configuration) but can
be overwritten here
spring.security.oauth2.client.registration.cas.client-
id=${idm.sec.core.oidc.client-id}
spring.security.oauth2.client.registration.cas.client-
secret=${idm.sec.core.oidc.client-secret}
spring.security.oauth2.client.registration.cas.scope=openid
spring.security.oauth2.client.registration.cas.redirect-
uri={baseUrl}/api/v1/authentication/oidc-login-response/{registrationId}
#spring.security.oauth2.client.registration.cas.authorization-grant-
type=authorization_code
#spring.security.oauth2.resource.jwk.key-set-
uri=${idm.sec.core.oidc.url}/jwks

spring.security.oauth2.client.provider.cas.issuer-
uri=${idm.sec.core.oidc.url}
#spring.security.oauth2.client.provider.cas.token-
uri=${idm.sec.core.oidc.token-path}
#spring.security.oauth2.client.provider.cas.authorization-
uri=${idm.sec.core.oidc.login-path}

Backup

If you want to use redeploy and backup for example in agenda (notification templates, scripts), you
must define default backup folder. When redploy is used, then actual templates (or scripsts) are
loaded from classpath by configuration (for templates or scripts) and deployed into application.
Previous templates (or scripts) are backup too.

Configuration property for backup files.
Configured attachment storage patrh (see
'idm.sec.core.attachment.storagePath') is used as default.
idm.sec.core.backups.default.folder.path=/tmp/backup

Http proxy

For outgoing http communication, you can set a proxy.

Server restart is needed to apply this configuration change.

Proxy for HTTP requests

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

idm.sec.core.http.proxy=12.34.56.78:1234

For reCAPTCHA is used since version 12.2.5 new configuration. Backward
compatibility with original configuration still exists.
Proxy configuration for reCAPTCHA
idm.sec.security.recaptcha.proxy=12.34.56.78:1234

CGLIB

CGLIB for creating proxies has to be enforced. Is possible to use annotations on methods, which is not
defined in service interface. Prevent to use some logic in service constructors (will be called twice)
and always define annotations in implementation class, read more.

use cglib for proxies by default
spring.aop.proxy-target-class=true

Virtual system

VS configurations allows define implementers via assigned IdM role or directly by selected identities.
If you do not define none directly implementers and none role in VS configuration, then will be used
implementers from default role. Default role can be defined in configuration:

If you do not define default role, then will be used **superAdminRole** as
default!
idm.sec.vs.role.default=<some-code-of-role>

Long polling

Long polling
idm.pub.app.long-polling.enabled=true

You can disable long polling for all types of entites with use value `false`.

Provisioning

It's possible to send additional attributes, when password is changed
(mapped attributes with flag sendOnPasswordChange)
- true: additional password attributes will be send in one provisioning
operation together with password
- false: additional password attributes will be send in new provisioning
operation, after password change operation
idm.sec.acc.provisioning.sendPasswordAttributesTogether=true

It's possible to automatic mapped existed account on the target system. It

https://www.credera.com/blog/technology-insights/open-source-technology-insights/aspect-oriented-programming-in-spring-boot-part-2-spring-jdk-proxies-vs-cglib-vs-aspectj/

2024/04/10 10:49 29/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

means, before create new account (call create on the connector),
we try to found account (by generated UID) on the target system. If
account will be
returned, then will be mapped on the IdM account. Target account will be
reused and only updated by connector.
- true: for reusing account
- false: for not reusing account
- Default value is 'true'
idm.sec.acc.provisioning.allowedAutoMappingOnExistingAccount=true

Default provisioning timeout in milis - every longer provisioning
operations will ends with timeout exception (prevent to stuck running
operations).
3 minutes by default.
Timeout has to be configured>= 1000, otherwise default will be returned.
idm.sec.acc.provisioning.timeout=180000

Provisioning global break

For enable global provisioning break you must set configurations properties defined
below, otherwise global provisioning break will not be activated.

Global break for update disabled/enabled (values: true/false)
idm.sec.acc.provisioning.break.update.disabled
Global break for update checked period (integer values)
idm.sec.acc.provisioning.break.update.period
Global break for update disable limit (integer values)
idm.sec.acc.provisioning.break.update.disableLimit
Global break for update disabled template (ID of template, if will by null
default template will be used)
idm.sec.acc.provisioning.break.update.templateDisable
Global break for update warning limit (integer values)
idm.sec.acc.provisioning.break.update.warningLimit
Global break for update warning template (ID of template, if will by null
default template will be used)
idm.sec.acc.provisioning.break.update.templateWarning
Global break for update. Existing identity recipients (identity username
or id, split by ',')
idm.sec.acc.provisioning.break.update.identityRecipients
Global break for update. Recipient will be solved as identities that has
assigned defined role/s (role code or id, split by ',')
idm.sec.acc.provisioning.break.update.roleRecipients
#
#
Global break for create disabled/enabled (values: true/false)
idm.sec.acc.provisioning.break.create.disabled
Global break for create checked period (integer values)
idm.sec.acc.provisioning.break.create.period

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

Global break for create disable limit (integer values)
idm.sec.acc.provisioning.break.create.disableLimit
Global break for create disabled template (ID of template, if will by null
default template will be used)
idm.sec.acc.provisioning.break.create.templateDisable
Global break for create warning limit (integer values)
idm.sec.acc.provisioning.break.create.warningLimit
Global break for create warning template (ID of template, if will by null
default template will be used)
idm.sec.acc.provisioning.break.create.templateWarning
Global break for create. Existing identity recipients (identity username
or id, split by ',')
idm.sec.acc.provisioning.break.create.identityRecipients
Global break for create. Recipient will be solved as identities that has
assigned defined role/s (role code or id, split by ',')
idm.sec.acc.provisioning.break.create.roleRecipients
#
#
#
Global break for delete disabled/enabled (values: true/false)
idm.sec.acc.provisioning.break.delete.disabled
Global break for delete checked period (integer values)
idm.sec.acc.provisioning.break.delete.period
Global break for delete disable limit (integer values)
idm.sec.acc.provisioning.break.delete.disableLimit
Global break for delete disabled template (ID of template, if will by null
default template will be used)
idm.sec.acc.provisioning.break.delete.templateDisable
Global break for delete warning limit (integer values)
idm.sec.acc.provisioning.break.delete.warningLimit
Global break for delete warning template (ID of template, if will by null
default template will be used)
idm.sec.acc.provisioning.break.delete.templateWarning
Global break for delete. Existing identity recipients (identity username
or id, split by ',')
idm.sec.acc.provisioning.break.delete.identityRecipients
Global break for delete. Recipient will be solved as identities that has
assigned defined role/s (role code or id, split by ',')
idm.sec.acc.provisioning.break.delete.roleRecipients

Reports

Report executor

In the application profile (application.properties) - overloadable via ConfigurationService.
Every report executor (~report) could have his own configuration properties under prefix:

2024/04/10 10:49 31/32 Configuration - backend

CzechIdM Identity Manager - https://wiki.czechidm.com/

disable / enable report
idm.sec.<module>.report-executor.<name>.enabled=true

Where <module> is report's module a <name> is report's name.

Common configuration properties for all reports:

enabled - on / off

Report renderer

In the application profile (application.properties) - overloadable via ConfigurationService.
Every report renderer could have his own configuration properties under prefix:

disable / enable renderer
idm.sec.<module>.report-renderer.<name>.enabled=true

Where <module> is renderer's module a <name> is renderer's name.

Common configuration properties for all renderers:

enabled - on / off

Logger

In the application profile (application.properties):

Show thread name configured by thread pools (task, event) in logs
(generated name is shown otherwise)
Two appenders 'console' and 'file' are provided by product. Same
configuration is needed for your custom appenders (added in logback.xml).
logging.pattern.console=%d{yyyy-MM-dd HH:mm:ss.SSS} %5level %relative ---
[%thread] %logger{60}.%M : %msg%n
logging.pattern.file=%d{yyyy-MM-dd HH:mm:ss.SSS} %5level %relative ---
[%thread] %logger{60}.%M : %msg%n

Logger levels can be configured programmatically (override logback.xml file with default logger
levels configuration).

In the application profile (application.properties) - overloadable via ConfigurationService:

idm.sec.core.logger.<packageName>=<level>

Where <packageName> is package name to set logger <level>.

Example:

idm.sec.core.logger.eu.bcvsolutions=DEBUG

Last
update:
2023/12/01
13:10

devel:documentation:application_configuration:dev:backend https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

https://wiki.czechidm.com/ Printed on 2024/04/10 10:49

Monitoring

Monitoring evaluator

In the application profile (application.properties) - overloadable via ConfigurationService.

disable / enable monitoring evaluator
idm.sec.<module>.monitoring-evaluator.<name>.enabled=true

Where <module> is monitoring's module a <name> is monitoring's name.

Common configuration properties for all monitorings:

enabled - true / false

From:
https://wiki.czechidm.com/ - CzechIdM Identity Manager

Permanent link:
https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

Last update: 2023/12/01 13:10

https://wiki.czechidm.com/
https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend

	[Configuration - backend]
	Configuration - backend
	Configure environment properties
	Application profiles
	Configured devstack profiles

	External configuration
	Environment properties

	Configuration items
	Application/ Server
	Change server for asynchronous processing (switch application instance)

	Jpa

	Additional datasources
	Developer
	JNDI datasource
	Using SSL
	Cache
	Attachment storage
	Activiti workflow
	Security
	Flyway
	Module configuration
	Swagger
	Emailer
	Templates
	Scripts
	Scheduler
	Identity
	Identity contract slice
	Role
	Tree
	Entity events
	Entity event processors

	Bulk actions
	Workflow settings for approval of change user roles
	Universal requests
	Notification from Workflow
	Confidential storage
	Entity filters
	Notification senders
	Authentication
	Authentication filters
	SSO authentication filter
	Remote user authentication filter
	Two-factor authentication
	CAS authentication filter
	OIDC authentication

	Backup
	Http proxy
	CGLIB
	Virtual system
	Long polling
	Provisioning
	Provisioning global break
	Reports
	Report executor
	Report renderer

	Logger
	Monitoring
	Monitoring evaluator

