
2025/05/25 06:01 1/6 Dynamic forms (eav)

IdStory Identity Manager - https://wiki.czechidm.com/

Dynamic forms (eav)
configuration, eav, form, attachment

Dynamic form instances (values) are saved in the individual tables according to the entity which they
are linked to ⇒ which is their owner (e.g. the entity IdmIdentityFormValue, IdmRoleFormValue).
Form values are not saved, if null value (by persistent type) is given ⇒ filled values are saved only.

FormService service for working with the extended attributes on the back-
end. FormInstance utility is useful on BE - contains value transformation to maps by
attributes etc.. Use this service in your custom module, benefits:

single autowired service for work with definitions, attributes and values
cache core:form-definition-cache for loading form definitions (with
attributes) is effective here.

On the front-end, the editing of dynamic forms is done by the component
EavForm.

Saving form values for the form definition work as PATCH. When attribute value has
to be deleted, then form value with null has to be given (use it even for multi valued
attributes).

If single attribute is saved (FormService#saveAttribute), then event EAV_SAVE
is not published. Save all attributes (FormService#saveValues), if publishing event
EAV_SAVE for owner is needed.

Dynamic form attribute supports data types (persistentType):

CHAR - one character
TEXT - strings (long text). Searching by TEXT is not supported, column is not indexed -
SHORTTEXT usage is preferred (+ indexed).
SHORTTEXT - strings (2000 chars). Indexed.
INT - integer
LONG - long
DOUBLE - saved as bigdecimal
BOOLEAN - true / false / null
DATE - date (without time)
DATETIME - date with time
BYTEARRAY - byte[]
UUID - uuid identifier. Indexed.
ATTACHMENT - attachment (~binary file). Read more about attachments.
CODELIST - referenced code list - persists items "code" into short text. Uses face type as code
list code.
ENUMERATION referenced frontend enumeration - persists items "code" into short text. Uses

https://wiki.czechidm.com/tag/configuration?do=showtag&tag=configuration
https://wiki.czechidm.com/tag/eav?do=showtag&tag=eav
https://wiki.czechidm.com/tag/form?do=showtag&tag=form
https://wiki.czechidm.com/tag/attachment?do=showtag&tag=attachment

Last
update:
2021/02/10
18:20

devel:documentation:application_configuration:dev:dynamic-forms https://wiki.czechidm.com/devel/documentation/application_configuration/dev/dynamic-forms

https://wiki.czechidm.com/ Printed on 2025/05/25 06:01

face type as enumeration name.

Changing persistentType and confidential is possible only for attributes
without persisted values ⇒ when attribute is not used for some values. Data migration,
when attribute's persistentType or confidential is changed is not supported
now.

with properties:

readonly
multi values - Is represented on the front-end by a textarea, where a line is a value (a new
line separates the values). This property is supported for persistent types CHAR, TEXT, INT,
LONG, DOUBLE and UUID.
confidential - .The values are stored in an confidential storage). Stored values of these
attributes - substitute characters only - are loaded on the front-end. The value can only be
changed and determined whether it is filled in. This property is supported for persistent types
CHAR, TEXT, INT, LONG, DOUBLE, UUID, BYTEARRAY.
required - value validation, read more.
unique - value validation, read more.
min - value validation, read more.
max - value validation, read more.
regex - value validation, read more.
validationMessage - custom message, when some validation fails, read more.

Dynamic form attributes can be rendered differently on frontend. Face type (faceType) property is
used for choosing frontend renderer. The default renderer is chosen by persistent type (e.g. UUID →
UUID).

Renderer is a frontend component, superclass component AbstractFormAttributeRenderer is
used for all renderer implementations. Renderer is responsible for IdmFormValue ⇔ input value
transformation.

Renderers are registered in module's component-descriptor.js as single component with
attributes:

id - unique component identifier
type = form-value - static component type is used for all form-value renderer
persistentType - which persistent type renderer supports
faceType - renderer face type ⇒ key. Unique face type should be given (by persistent type). Its
optional persistentType is used as default, when no faceType is given.
component - renderer implementation (AbstractFormAttributeRenderer descendant).
labelKey - localization key ⇒ renderer name. Its optional, faceType is used, when no
labelKey is given.

All component descriptor features are supported. Read tutorial, how to create custom form attribute
renderer.

Custom configuration can be added to registered renderers (@since CzechIdM 10.8.0) - use
AbstractFormAttributeRenderer on backend to define additional renderer properties.

https://wiki.czechidm.com/devel/documentation/security/dev/confidential-storage
https://github.com/bcvsolutions/CzechIdMng/tree/develop/Realization/frontend/czechidm-core#component-descriptor
https://wiki.czechidm.com/tutorial/dev/how_to_create_eav_face_type
https://wiki.czechidm.com/tutorial/dev/how_to_create_eav_face_type

2025/05/25 06:01 3/6 Dynamic forms (eav)

IdStory Identity Manager - https://wiki.czechidm.com/

Adding the support of extended attributes for a new entity

Backend

Adding an interface implementation FormableEntity to the new entity,
creating a manager implementation by inheriting AbstractFormableService for the new
entity,
creating the entity by inheriting AbstractFormValue, which will represent the values of
extended attributes for the new entity (owner),
creating a repository by inheriting AbstractFormValueRepository for the values of the
extended attributes,
creating the manager by inheriting AbstractFormValueService for the values of the
extended attributes.

Frontend

issuing a REST endpoint for saving the extended attributes from the FE - e.g.
IdmIdentityController - controller has to evaluate security to read / save form values by
their owner (e.g. by identity),
creating a service and redux manager communicating with REST by inheriting
FormableEntityManager - e.g. IdentityManager,
using the component EavForm for filling in and sending the values of the extended attributes
from the FE to the BE - e.g. IdentityEav content.

Agenda for working with forms

On the FE, there is an agenda of forms - their definition and attributes. Each definition can contain
zero or more attributes. To maintain the integrity, an interface UnmodifiableEntity has been created,
which allows adding a flag that the entity has been created by the system and cannot be modified (or
some of its attributes) and deleted (this logic now needs to be implemented manually into the
relevant controllers), for example in IdmFormAttributeController.

Data migration, when attribute's persistentType or confidential is changed is
not supported now.

Localization

Beware, form type, form code and attribute code is used for composing the key
for localization and in the string all special characters (white spaces, dots,
colons etc.) will by replaced by dash (spinal-case or kebab-case on
frontend).

Example form code eu.bcvsolutions.idm.acc.entity.SysSystem will be transformed into eu-

https://github.com/bcvsolutions/CzechIdMng/blob/develop/Realization/backend/core/core-api/src/main/java/eu/bcvsolutions/idm/core/api/entity/UnmodifiableEntity.java
https://github.com/bcvsolutions/CzechIdMng/blob/develop/Realization/backend/core/core-impl/src/main/java/eu/bcvsolutions/idm/core/eav/rest/impl/IdmFormAttributeController.java

Last
update:
2021/02/10
18:20

devel:documentation:application_configuration:dev:dynamic-forms https://wiki.czechidm.com/devel/documentation/application_configuration/dev/dynamic-forms

https://wiki.czechidm.com/ Printed on 2025/05/25 06:01

bcvsolutions-idm-acc-entity-syssystem

Read more in tutorial

Validation
validation

For form attribute values is possible to configure prepared validations. Validation are evaluated (on
the backend), when form with extended attributes is saved and sent to backend. Simple validations
as required, min, max are evaluated on frontend after value is changed.

Validations are suported for single attribute values only for now (feature request
#1874).

Required

Value is required.

Unique

Value has to be unique.

Unique validation is not supported for BYTEARRAY and ATTACHMENT persistent types.

Min, Max

Value has to be greater than (lesser than) or equal given min (max) values. Real number (38,4) can
be configured.

Min and max validation is supported for numeric DOUBLE, INT, LONG persistent types.

Regex

Value has to match given regular expression (java pattern is used).

Unique validation is not supported for BYTEARRAY and ATTACHMENT persistent types.

https://wiki.czechidm.com/tutorial/dev/dynamic_form_localization
https://wiki.czechidm.com/tag/validation?do=showtag&tag=validation
https://redmine.czechidm.com/issues/1874
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

2025/05/25 06:01 5/6 Dynamic forms (eav)

IdStory Identity Manager - https://wiki.czechidm.com/

Use single back slash for configure regex on GUI ⇒ use double back slash in java.
Example regex for the ip v4 address:

G U I :
^([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5]
)\.([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-
5])$
j a v a :
^([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\.([01]?\\d\\d?|2[0-4]\\d|
25[0-5])\\.([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\.([01]?\\d\\d?|
2[0-4]\\d|25[0-5])$

Validation message

Custom validation message. If message is not defined, then default message by invalid validation
type will be shown.

Can contain localization key (e.g. core:validationError.invalid.unique).
Parameters min, max, regex, unique, required is available for localization
message.

Last
update:
2021/02/10
18:20

devel:documentation:application_configuration:dev:dynamic-forms https://wiki.czechidm.com/devel/documentation/application_configuration/dev/dynamic-forms

https://wiki.czechidm.com/ Printed on 2025/05/25 06:01

Code lists

Use CodeListManager for creating and providing code lists and items through
application on backend (e.g. available for scripts, which could be used in provisioning).

Use CodeListSelect and CodeListValue for rendering code lists on frontend.

Frontend localization is supported in the item's name. For example item with name
environment.development.title will be localized.

Authorization policies support

Identity form values can be secured by authorization policies when some identity extended attributes
have to be secured - see how in configure authorization policies.

Authorization policies only support identity extended attribute values. Support for
other entities can be added in the future.

Future development

Form value data migration, when persistent type is changed.
Attachment renderer: support multiple files, validation support (now is validation on input)
Created deep copy, when form values are copied ⇒ attachment is linked to two form values and
is removed, when the first one is deleted.
#1874: Support unique validation for multivalued eav attributes

From:
https://wiki.czechidm.com/ - IdStory Identity Manager

Permanent link:
https://wiki.czechidm.com/devel/documentation/application_configuration/dev/dynamic-forms

Last update: 2021/02/10 18:20

https://wiki.czechidm.com/devel/documentation/security/dev/authorization#secure_identity_form_extended_attribute_values
https://redmine.czechidm.com/issues/1874
https://wiki.czechidm.com/
https://wiki.czechidm.com/devel/documentation/application_configuration/dev/dynamic-forms

	Dynamic forms (eav)
	Adding the support of extended attributes for a new entity
	Backend
	Frontend

	Agenda for working with forms
	Localization
	Validation
	Required
	Unique
	Min, Max
	Regex
	Validation message

	Code lists
	Authorization policies support
	Future development

