
2025/07/13 08:29 1/5 Architecture - backend

IdStory Identity Manager - https://wiki.czechidm.com/

Architecture - backend
backend, architecture

indexmenu_n_10

Backend is based primarily on the Spring and Activiti workflow technologies.

Application layers

Going from the bottom:

Entity (AbstractEntity ⇒ repository (AbstractEntityRepository) ⇒ dto (AbstractDto) ⇒
service (AbstractReadWriteDtoService) ⇒ REST (DefaultReadWriteDtoController).

Creating a child of each one of the classes above is sufficient for issuing a new REST endpoint for the
new agenda (entity).

And now in a bit more detail …

Relational database

We are expecting to use the relational databese through a jdbc connector. Primarily, we are going to
use PosgreSQL and h2 for demo purposes (e.g. the default spring profile is going to be connected to
h2, so that nothing would need to be configured after downloading the application from Git and the
application would work properly after deploying to Tomcat). Spring profiles for the individual
supported databases will be created. There is going to be a set of database scripts (create + change
scripts) for each database. We expect use the flyway tool for their administration.

Hibernate ORM

Using of Hibernate is a logical choice, nothing changes/ will change about that. We will keep creating
entities which will map relational database tables into java classes. Moreover, entities will be
supplemented with jsr303 (@NotNull, @Email ..) validation annotations, which will be automatically
validated (validation annotations are used in dto too and propagated to REST).

Setting the cache selectively for the individual operations:
https://spring.io/blog/2015/06/15/cache-auto-configuration-in-spring-boot-1-3

Spring

The application is superordinate to the spring boot platform and, besides the core functions, it uses a
number of spring frameworks, libraries and procedures:

Spring Data

https://wiki.czechidm.com/tag/backend?do=showtag&tag=backend
https://wiki.czechidm.com/tag/architecture?do=showtag&tag=architecture
https://wiki.czechidm.com/_media/devel/documentation/architecture/dev/indexmenu_n_10
https://wiki.czechidm.com/devel/documentation/architecture/dev/database#database_scripts
https://wiki.czechidm.com/devel/documentation/architecture/dev/database#database_scripts
https://wiki.czechidm.com/devel/documentation/architecture/dev/flyway
https://spring.io/blog/2015/06/15/cache-auto-configuration-in-spring-boot-1-3
https://projects.spring.io/spring-boot/

Last update:
2019/05/27 06:19 devel:documentation:architecture:dev:backend https://wiki.czechidm.com/devel/documentation/architecture/dev/backend

https://wiki.czechidm.com/ Printed on 2025/07/13 08:29

Spring Security
Spring Plugin
AOP (aspectj)
Events
…

Spring Data

Spring Data facilitates the work with the (not only) relational database. The data can be accessed
simply by issuing the interface according to certain conventions. I find this being combined with the
securing through annotations and the possibility of adding SpEl expressions into queries very strong.

Intended extensions: - support of searching through standard jpa criteria for more difficult queries via
Querydsl

Spring Data REST

Spring Data REST are used as helper for rest layer initialization only (convertors, patch
method) - to make use of some of the advantages of spring data REST (patch method,
json mapping, converters) and, at the same time, to be able to add a service layer,. we
are exposing rest endpoint ourself as @RestController - we are using dto layer
above entities, entities are not exposed directly on endpoint.

Dto layer is created above entities - services (AbstractReadWriteDtoService) works and
exposed dtos (AbstractDto) only. Entities (AbstractEntity) are used on repository layer and
internally in services. Rest endpoints work only with dtos, respectivelly with services using dtos. Dto
can be identified by uuid identifier or by code (string code ⇒ Codeable identifier - e.g. identity is
identified by username. For tutorial how to set codeable evaluator visit this tutorial). LookupService
can be used for getting dto by uuid identifier or code.

Advantages of Spring Data REST (not used now):

hal - uses Spring hateoas
documentation directly at REST - annotation, apls
projection(in the manner of trimmed view),
securing through annotations,
event handlers (planned use of provisioning)
patch method
versing(ETag) - usable for optimistic locks
last modification of resource

Disadvantages of Spring Data REST (not used now):

Non-existence of service layer (only repositories)
Non-existence of service layer (mapping to dtos) - I consider this so important that I have
mentioned it twice. REST controllers are issued directly from entities, or rather from spring data
repositories, which makes creating anything more complex than CRUD methods complicated.

https://wiki.czechidm.com/devel/documentation/architecture/dev/modularity#backend
https://wiki.czechidm.com/devel/documentation/architecture/dev/events
http://docs.spring.io/spring-data/jpa/docs/current/reference/html/#repositories.multiple-modules
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://spring.io/blog/2011/04/26/advanced-spring-data-jpa-specifications-and-querydsl/
https://wiki.czechidm.com/tutorial/adm/codeable_permission

2025/07/13 08:29 3/5 Architecture - backend

IdStory Identity Manager - https://wiki.czechidm.com/

An API cannot be created for services created in such a way - the entity itself which is fixed to
implementation (database) flows everywhere.
links with an absolute pathway to BE are used as entity identifiers (e.g.
http://localhost:8080/idm/api/identities/username). If BE is built behind a proxy, it should not
be a problem, it is only a matter of adding a configuration according to the manual (needs to
be tested).

Spring Security

The Spring Data layer, REST or services themselves can be supplemented with annotations evaluating
security (before or after calling). A logged-in user can be used favorably as an input for search queries
(e.g. queries like "give me subordinates"). The SpEl expressions are used in the annotations, so that is
will be possible to create and call any function which decides whether someone has or does not have
a right for something.

Authorities model

Authorities (hasAuthority), not roles themselves, will be used for evaluating the target permissions.
Similarly to the previous backend, there is a configuration of individual authorities (permissions) with
each role. When an identity is assigned a role, the identity acquires the target authorities. Authorities
are returned at login as a unique list of base permissions (e.g. USER_READ) ⇒ the authorities are
available in the user's security context.

To make assigning permissions to a role easier the following interfaces are created:

BasePermission - base permissions (e.g. READ, WRITE …)
GroupPermision - group (target) permission (e.g. USER, ROLE …)

Assigning permissions to a role is represented by this pair:

target - target permission - an instance of GroupPermision
action - base permission - an instance of BasePermission

When evaluating, target and action acts as an authority target_action (e.g. USER_READ).

Each module can register its own set of permissions (both a new group, and adding new base
permissions to an already existing group).

Each role has its own type (system, business, technical …) according to application settings.

Authorization policies can be used for securing data.

Workflow

We have chosen Activiti BPM Platform as our workflow engine. It is a widely-used workflow engine,
which focuses mainly on the speed and simplicity of usage for developers. Its main purpose is
controlling and executing procedures described using the BPMN 2.0 language in Java.

http://stackoverflow.com/questions/30020188/how-to-configure-spring-hateoas-behind-proxy
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
https://wiki.czechidm.com/devel/documentation/security/dev/authorization
http://www.activiti.org/userguide

Last update:
2019/05/27 06:19 devel:documentation:architecture:dev:backend https://wiki.czechidm.com/devel/documentation/architecture/dev/backend

https://wiki.czechidm.com/ Printed on 2025/07/13 08:29

One of the advantages is its integration with Spring framework and therefore its easier application in
our devstack. Activiti Platform allows us to issue a REST interface through which most functions can
be controlled, i.e. it is possible to have Activiti Platform + REST interface running on the application
server and communicate with it even from a non-Java environment. A disadvantage of this solution is
the loss of direct Java integration, i.e. the possibility of calling Spring beans directly from a workflow
process (using Expression Language), which considerably extends the potential of the workflow and
speeds up development.

Backend functional requirements

Logging

Documentation

Notifications

Documentation

Audit

Documentation

Log locking

We expect to use optimistic locks on key entities. Auxiliary entities will not be locked - the last to
come is the winner. If needed, it will be possible to engage an optimistic lock on any entity. The use of
pessimistic locks is not expected yet.

Regarding the user interface, the `ETag` and `LastModified` headings are planned to be used for
informing the user about changes made by somebody else in his currently edited log + a mechanism
for using my changes or reloading the changed log.

The solution assumes that the objects will not be kept loaded (outside of the UI) for long in order not
to break the optimistic log. At the same time, it is necessary to keep the transaction processing over
the object being changed.

Optimistic lock is engaged on entities:

Identity
Organization (IdmTreeNode)
Role
System

http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html
https://wiki.czechidm.com/devel/documentation/audit/dev/logging
https://wiki.czechidm.com/devel/documentation/notifications
https://wiki.czechidm.com/devel/documentation/audit

2025/07/13 08:29 5/5 Architecture - backend

IdStory Identity Manager - https://wiki.czechidm.com/

Provisioning a synchronization

Documentation

Performing actions always under a user

TODO: Guest, system …

Non-functional requirements

CI/CD

Documentation

Open source

Project on GitHub

Public demo

Application profiles configured:

Default application profile configured to db h2 is used for issuing a demo.

Testing

Documentation

From:
https://wiki.czechidm.com/ - IdStory Identity Manager

Permanent link:
https://wiki.czechidm.com/devel/documentation/architecture/dev/backend

Last update: 2019/05/27 06:19

https://wiki.czechidm.com/devel/documentation/provisioning
https://proj.bcvsolutions.eu/ngidm/doku.php?id=roztridit:ci_cd
https://github.com/bcvsolutions/CzechIdMng
https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend#configured_profiles
https://wiki.czechidm.com/devel/documentation/conventions/dev/testing
https://wiki.czechidm.com/
https://wiki.czechidm.com/devel/documentation/architecture/dev/backend

	Architecture - backend
	Application layers
	Relational database
	Hibernate ORM
	Spring
	Spring Data
	Spring Data REST
	Spring Security
	Authorities model

	Workflow

	Backend functional requirements
	Logging
	Notifications
	Audit
	Log locking
	Provisioning a synchronization
	Performing actions always under a user

	Non-functional requirements
	CI/CD
	Open source
	Public demo
	Testing

