
2025/07/12 08:27 1/25 Events - processing of events

IdStory Identity Manager - https://wiki.czechidm.com/

Events - processing of events
event, architecture, configuration, processor

An event mechanism has been designed to make extending and overlapping of the CzechIdM core
functionality within any module possible.

The event (EntityEvent) with type (EventType) is published via EntityEventManager from
different places in the application (⇒ hook). A number of processors can react to the event
(AbstractEntityEventProcessor) in a defined order (number ⇒ the smaller it is, the sooner the
processor is run). Processors run synchronously at default and in one transaction (see next section).
Processors with the same order will be run in a random order (OrderComparator) - it's good practice
to design and set different processor's order (think about it in design). Instead of the annotation
@Order, the method getOrder needs to be overloaded (see the example). Event content could be
any Serializable object, but AbstractDto descendant is preffered - see original source lifecycle
feature. Event content is required, event without content couldn't exist.

Event lifecycle

Event is created with given content1.

EntityEvent<IdmIdentityDto> event = new
IdentityEvent(IdentityEventType.UPDATE, updateIdentity);

then is given to the processing via EntityEventManager1.

EventContext<IdmIdentityDto> context = entityEventManager.process(event);

when event is published and their content is descendant of AbstractDto, then original source1.
is filled to the event - original source contains previously persisted (original) dto and could be
used in "check modification" processors. If event creating new dto, then original source is null.
Original source could be set externally - then no automatic filling occurs.
returning context contains results from all reacting processors in defined processors order.2.
the processor can label the event as (closed) or (suspended) and therefore skip all the other3.
processors. If the suspended event is published again via EntityEventManager, the
processing will continue where it was suspended, if context (with processed results) is
preserved. If the processing of the event is (suspended), the called method should return the
adequate accepted state.
when event walk through processors, then event's processed order is incremented - this order is4.
used after event suspending and run again - event processing will continue with processor with
the next order. Look out: when event is persisted, she will lost their context ⇒ when event is
recreated from persistent state, she will continue with the next order.

Event types

Event is published with content and specific event type (e.g. CREATE, PASSWORD). Processors can be
register by content type and event type - e.g. process event with IdmIdentityDto content and
event type CREATE ⇒ other event contents and other event types will not be processed by this

https://wiki.czechidm.com/tag/event?do=showtag&tag=event
https://wiki.czechidm.com/tag/architecture?do=showtag&tag=architecture
https://wiki.czechidm.com/tag/configuration?do=showtag&tag=configuration
https://wiki.czechidm.com/tag/processor?do=showtag&tag=processor
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/Ordered.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/OrderComparator.html

Last update:
2021/08/13 07:18 devel:documentation:architecture:dev:events https://wiki.czechidm.com/devel/documentation/architecture/dev/events

https://wiki.czechidm.com/ Printed on 2025/07/12 08:27

processor.

Event types has to be compared by their string representation, NOT by instance. Concrete
event types e.q. IdentityEventType are used for documentation reason only - which domain type
supports which event. Event types can be added in different modules with different type, but
processor can react across all module (⇒ is registered to string event type representation
eventType.name()).

...
EntityEvent<IdmIdentityDto> event = new
CoreEvent<IdmIdentityDto>(CoreEventType.CREATE, identity);
if (event.hasType(IdentityEventType.CREATE)) {
 // do something
}
...

Module can publish their own event types. Basic (core) event types

CREATE - synchronous, new entity is created
UPDATE - synchronous, entity is updated
DELETE - synchronous, entity is removed
NOTIFY - asynchronous, notify about entity is changed (CU).
EAV_SAVE - synchronous, some entity extended attribute is modified (CUD) - it is synonym for
NOTIFY type ⇒ notify about entity extended attribute is changed (only extended attribute is
changed). When entity is saved together with extended attributes, then only source event (e.g.
CREATE) on owner entity is published (⇒ eav attributes are saved after owner entity is saved in
once process line - e.g. CREATE).

Different (and custom) event types can be used for different entities.

Entities with event support

Supported events for individual entities:

core:
IdmAuthorizationPolicyDto - authoriyation policies

supports base event types CREATE, UPDATE, DELETE
IdmAutomaticRoleAttributeDto - automatic role by attribute

supports base event types CREATE, UPDATE, DELETE
IdmAutomaticRoleAttributeRuleDto - rule of automatic role by attribute

supports base event types CREATE, UPDATE, DELETE
IdmIdentityDto - operation with the identity

supports base event types CREATE, UPDATE, DELETE, EAV_SAVE, NOTIFY
adds event type PASSWORD - changes password
adds event type PASSWORD_EXPIRED - password expires

IdmProfileDto - operation with the identity profile
supports base event types CREATE, UPDATE, DELETE, NOTIFY

IdmPasswordDto - operation with the CzechIdM password
supports base event types CREATE, UPDATE, DELETE

2025/07/12 08:27 3/25 Events - processing of events

IdStory Identity Manager - https://wiki.czechidm.com/

event is propagated when identity log in (e.g. last login date is changed)
IdmTokenDto - operation with the CzechIdM token

supports base event types CREATE, UPDATE, DELETE
event is propagated when token is created, disabled (⇒ updated), deleted - e.g.
when identity log in / out (token type cidmst)

IdmRoleDto - operation with the role
supports base event types CREATE, UPDATE, DELETE, EAV_SAVE, NOTIFY
adds event type DUPLICATE - duplicate role, event is published for create / update
role duplicate, read more here.

IdmRoleGuaranteeDto - operation with the role guarantee by identity
supports base event types CREATE, UPDATE, DELETE

IdmRoleGuaranteeRoleDto - operation with the role guarantee by role
supports base event types CREATE, UPDATE, DELETE

IdmRoleRequestDto - role requests
supports base event types CREATE, UPDATE, DELETE
adds event type EXCECUTE - execute role request (i know EXECUTE!, but it's too
late …)
supports event type NOTIFY - is published, when request is completely approved or
executed - provisioning listen this event mainly.

IdmRoleCatalogueDto - operation with the role catalogue
supports base event types CREATE, UPDATE, DELETE, NOTIFY

IdmRoleCompositionDto - operation with the business roles
supports base event types CREATE, UPDATE, DELETE

IdmIdentityRoleValidRequestDto - role starts to be valid
adds event type IDENTITY_ROLE_VALID.

IdmIdentityRoleDto- assigning a role to the user
supports base event types CREATE, UPDATE, DELETE
supports base event type NOTIFY - when parent role request event is propagated,
then provisioning listener skips this elementary event processing and waits to role
request is completed - listen NOTIFY on IdmRoleRequestDto.

IdmIdentityContractDto - labor-law relation
supports base event types CREATE, UPDATE, DELETE, EAV_SAVE, NOTIFY

IdmContractPositionDto - other contract position
supports base event types CREATE, UPDATE, DELETE, NOTIFY

IdmRoleTreeNodeDto - automatic role by tree structure
supports base event types CREATE, UPDATE, DELETE

PasswordChangeDto - used in password prevalidation only
adds event type PASSWORD_PREVALIDATION - evaluates registered password
policies - show policies setting before password is changed.

IdmContractGuaranteeDto - manually added guarantee to contract
supports base event types CREATE, UPDATE, DELETE, NOTIFY

IdmTreeTypeDto - tree structure type
supports base event types CREATE, UPDATE, DELETE

IdmTreeNodeDto - tree structure node
supports base event types CREATE, UPDATE, DELETE, EAV_SAVE, NOTIFY

IdmPasswordPolicyDto - password policy
supports base event types CREATE, UPDATE, DELETE

IdmLongRunningTaskDto - long running task
supports base event types CREATE, UPDATE, DELETE
adds event type END - long running task ended.

IdmEntityEventDto - persisted event

https://wiki.czechidm.com/devel/documentation/roles/dev/duplicate-role

Last update:
2021/08/13 07:18 devel:documentation:architecture:dev:events https://wiki.czechidm.com/devel/documentation/architecture/dev/events

https://wiki.czechidm.com/ Printed on 2025/07/12 08:27

supports base event types CREATE, UPDATE, DELETE
adds event type EXECUTE - executes persisted event.

IdmEntityStateDto - persisted entity / event state
supports base event types CREATE, UPDATE, DELETE

IdmFormInstanceDto - eav attribute values from single definition.
supports base event types UPDATE - update event type is used for saving eav
attributes (⇒ CUD form values)

IdmCodeListDto - code lists
supports base event types CREATE, UPDATE, DELETE

IdmCodeListItemDto - code list items
supports base event types CREATE, UPDATE, DELETE

IdmNotificationTemplateDto - notification templates
supports base event types CREATE, UPDATE, DELETE

IdmIdentityProjectionDto - identity form projections
supports base event types CREATE, UPDATE

ModuleDescriptorDto - application modules
supports base event types INIT, ENABLE, DISABLE

IdmScripDto - groovy scripts
supports base event types CREATE, UPDATE, DELETE

IdmMonitoringDto - monitoring evaluators
supports base event types CREATE, UPDATE, DELETE
adds event type EXECUTE - run monitoring evaluator

IdmMonitoringResultDto - monitoring results (returned from evaluator)
supports base event types CREATE, UPDATE, DELETE

acc:
AccAccountDto - Accounts on target system

supports base event types CREATE, UPDATE, DELETE
adds event type START - starts provisioning for given account.

AccIdentityAccountDto - Identity accounts on target system
supports base event types CREATE, UPDATE, DELETE

SysSystemDto - System in ACC module
supports base event types CREATE, UPDATE, DELETE

SysRemoteServerDto - Remote server in ACC module
supports base event types CREATE, UPDATE, DELETE

SysSystemMappingDto - Mapping between system and his mapping of provisioning or
sync

supports base event types CREATE, UPDATE, DELETE
SysSchemaAttributeDto - Connector schema on system

supports base event types DELETE
SysProvisioningOperationDto - execute provisioning operation. Look out, persisting
provisioning operation into queue itself doesn't support events. Events are added for
executing operations from queue:

adds event type CREATE - execute provisioning for CREATE operation
adds event type UPDATE - execute provisioning for UPDATE operation
adds event type DELETE - execute provisioning for DELETE operation
adds event type CANCEL - cancels provisioning operation

AbstractSysSyncConfigDto (SysSyncConfigDto, SysSyncContractConfigDto,
SysSyncIdentityConfigDto) - synchronization

supports base event types CREATE, UPDATE, DELETE
adds event type START - starts synchronization

2025/07/12 08:27 5/25 Events - processing of events

IdStory Identity Manager - https://wiki.czechidm.com/

adds event type START_ITEM - starts synchronization of one item (~entity)
adds event type CANCEL - cancels synchronization

SysSyncItemLogDto - synchronization item
vs:

VsRequestDto - Request for account change in virtual system
adds event type EXCECUTE - executes request

rpt:
RptReportDto - generate report

adds event type GENERATE - generates request

A page has been created directly in the application on the module page for an overview of all entity
types and event types migrating through event processing. All the registered processors including the
configuration are listed there:

The default order for listeners (- ⇒ before, + ⇒ after).

Basic interfaces

EntityEvent - an event migrating through the processors. The content of the event can be
BaseEntity, BaseDto or any serializable content.
EventContext - holds the context of the processed event - which processors it has been
processed by, with what results, if the processing is suspended, closed, etc.
EventResult - the result of processing of the event by one processor.
EntityEventProcessor - event processor. Processor has to have unique identifier by
module.
AsyncEntityEventProcessor - asynchronous entity event processor. Processor can control
asynchronous processing priority.
EntityEventManager - ensures publishing of the event to processors.
EventableDtoService - adds event processing support to service - event processors have to
be provided (e.g. for save, delete).

Basic classes

AbstractEntityEvent - an abstract event migrating through the processors - when adding a
proper one can be simply inherited from.
DefaultEventContext - the default context of the processed event - all abstract and default
events and processors use it.

https://wiki.czechidm.com/_detail/navrh/entity-event-processors.png?id=devel%3Adocumentation%3Aarchitecture%3Adev%3Aevents

Last update:
2021/08/13 07:18 devel:documentation:architecture:dev:events https://wiki.czechidm.com/devel/documentation/architecture/dev/events

https://wiki.czechidm.com/ Printed on 2025/07/12 08:27

DefaultEventResult - The default event result processed by one processor - all abstract and
default events and processors use it.
AbstractEntityEventProcessor - abstract event processor - when adding a proper one
can be simply inherited from.
AbstractApprovableEventProcessor - the event processor will send the whole event with
dto (or serializable) content to WF for approval. It is necessary to configure the definition of the
WF where the event will be sent to.
AbstractPublishEntityChangeProcessor - publish asynchronous NOTIFY event.
DefaultEntityEventManager - ensures publishing of the events to processors.
AbstractEventableDtoService - adds default event processing support to service - event
processors have to be provided (e.g. for save, delete).

AbstractEntityEventProcessor

Use this super class, when creating new processor implementation (this class contains some boring
parts).

Methods, which have to be implemented:

getName() - Unique (module scope) configurable object identifier. Its used in configuration key
etc.
process(event) - the main processors method with business logic.
getOrder() - when will be processor processed. Processors are executed in defined order.

Methods, which could be implemented [optional]:

supports(event) - Returns true, when processor supports given event. Default
implementation takes processor's template entity class and event type given in constructor (or
configured by eventTypes property).
conditional(event) - Returns true, when processor supports given event. Returns true by
default. Override this method for adding some condition.
isClosable() - Returns true, when processor could close event (only documentation
purpose now). Returns false by default.

AsyncEntityEventProcessor

Use this super class, when creating new asynchronous processor implementation.

Methods, which could be implemented [optional]:

* getPriority(event) - Registered async processor can vote about priority of processing for given
event. Returns null by default ⇒ processor doesn't vote about priority - preserve original event
priority. Use IMMEDIATE to execute whole event synchronously. All registered processors votes about
event priority - whole event will be processed with the highest priority.

AbstractInitApplicationProcessor

Use this super class for providing application and module init data.

https://wiki.czechidm.com/devel/documentation/architecture/dev/events/init-data

2025/07/12 08:27 7/25 Events - processing of events

IdStory Identity Manager - https://wiki.czechidm.com/

Transactions

Transactional processing is controlled before the event publishing itself - the whole processing now
takes place in a one transaction and all processors run synchronously by default. In case of an error in
any processor, the whole transaction is rolled back, which has some advantages:

simple adding of validation or referential integrity
repeating the whole chain

and disadvantages as well:

having to catch all the exceptions properly to avoid "breaking the chain"
saving logs and archives in the new transaction (Propagation.REQUIRES_NEW)

Event properties

Event properties (Map) can be specified for the event. Properties could be used in event processing.

Event properties are propagated automatically from parent into child event:

if parent event is given, when child event is published
if child event doesn't contain property with the same key - property can be preset manually and
has a higher priority.
properties needed for internal event mechanism are not propagated. Property keys can be
found in EntityEvent.

When NOTIFY event is published and event will be processed synchronously
(asynchronous event processing is disabled or event has IMMEDIATE priority), the
properties set by processing NOTIFY event is also available in the original event.

Asynchronous event processing

CzechIdM 8.0.0 brings new feature - asynchronous event processing. New event type NOTIFY was
added, all previous events (CREATE, UPDATE, DELETE, EAV_SAVE etc.) are still synchronous.

Asynchronous NOTIFY event is published for dtos:

IdmIdentityDto - published, when identity is created or updated (or eav is saved, updated,
deleted)
IdmIdentityContractDto- published, when contract is created or updated (or eav is saved,
updated, deleted)
IdmContractGuaranteeDto- published, when contract guarantee is created or updated (or
eav is saved, updated, deleted)
IdmIdentityRoleDto- published, when identity role is created or updated (or eav is saved,
updated, deleted)
IdmRoleDto- published, when role is created or updated (or eav is saved, updated, deleted)

Last update:
2021/08/13 07:18 devel:documentation:architecture:dev:events https://wiki.czechidm.com/devel/documentation/architecture/dev/events

https://wiki.czechidm.com/ Printed on 2025/07/12 08:27

IdmRoleRequestDto- published, when request is completely approved or executed -
provisioning listen this event mainly.
IdmTreeNodeDto- published, when tree node is created or updated (or eav is saved, updated,
deleted)
IdmRoleCatalogueDto- published, when identity role catalogue is created or updated
(doesn't have eav attributes)

As you can see, entity DELETE event is still synchronous.

Other entities will be added soon, when new asynchronous entity event processors will be
implemented.

NOTIFY event type is processed asynchronously:

order 500 - by automatic roles in core module,
order 1000 - by account management in acc module, then provisioning is executed.

When asynchronous event is published, it's persisted into event queue (IdmEntityEvent). Internal
scheduled task executes events from queue - all registered processors for event type NOTIFY is
processed - the same behavior as standard event processing, processors are called in defined order
synchronously by defult. Event (~entity) states (IdmEntityState) are persisted during event is
processed (created / running / failed). Successfully processed events are deleted from queue by
processor EntityEventDeleteExecutedProcessor. When exception occurs, event stays in queue with
appropriate result code. Event agenda is available under APP_ADMIN permission on frontend from
audit menu (shortcut tab can be added on all entity details e.g. see identity detail).

Features

Process event from queue

Events from queue are processed by event owner id - one event for one owner can be executed in the
same time ⇒ we need to preserven event order by created date for one owner. Super owner id
(EntityEventManager.EVENT_PROPERTY_SUPER_OWNER_ID) can be used for setting custom
event owner - this property will be resolved for evaluating running events for the same owner
concurrency.

Events from queue can be deleted only (events without children can be deleted now
from FE). Operation for retry failed events on truncate all events in queue will be
developed in future.

Event priority

Before event is persisted into queue, then event priority is evaluated, priority types:

2025/07/12 08:27 9/25 Events - processing of events

IdStory Identity Manager - https://wiki.czechidm.com/

IMMEDIATE - immediate ~ synchronously. Event will be executed synchronously.
HIGH - asynchronously (7 / 10 in one cycle, batch size can be configured)
NORMAL - asynchronously (3 / 10 in one cycle, batch size can be configured)

Events are processed from queue by internal scheduled tasks by priority. Events with HIGH priority
will use 7 slots, events with NORMAL priority will use 3 slots ⇒ events will be processed 7 / 3, when
internal scheduled task for processing events will be executed.

Priority can be set to event manually or registered processors can vote about event's priority - see
AsyncEntityEventProcessor - the highest priority is used.

Execute date

Execute date can be set to event manually. Event with priority HIGH or NORMAL will be processed
after given date. Can be used for events, which could be executed sometimes "in night".

Parent event

Event can be published by another event ~ event chain (tree) is persisted. For example, when
contract is saved, then contract NOTIFY event is published. This event is processed by provisioning
processors - but only NOTIFY event with contract's identity is published here only. Provisioning is
physically executed in other processor, which processes identity NOTIFY event.

Event parameters

When asynchronous event is published, then event content (and previous ~ original content) and
event parameters is persisted into queue. This persisted attributes are used, when event is
resurrected from queue and executed. Attributes are available in registered asynchronous processors
- evaluate modifications, skipping by event parameter value etc. can be implemented in processors
business logic.

Remove duplicate events

When internal scheduled task for executing event from queue is processed, then duplicate events are
removed.

Duplicate event is event with the same:

owner
event type
event properties
original source (embedded dtos and audit fields are ignored).

Older duplicate events are removed - the newest event is used. Events are processed by priority in
batch, default batch size can be configured ⇒ duplicates are removed only in this batch (not
configurable for now, see future development). Batch size is designed this way, because events are

https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend#entity_events
https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend#entity_events
https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend#entity_events

Last update:
2021/08/13 07:18 devel:documentation:architecture:dev:events https://wiki.czechidm.com/devel/documentation/architecture/dev/events

https://wiki.czechidm.com/ Printed on 2025/07/12 08:27

processed by priority - event with HIGH priority should not wait too long for another bulk is begin to
process. Remove duplicates should be redesigned from scratch - remove duplicates through whole
queue.

Entity state

Persist event (~entity) state, when event is processed. State can be persisted manually, even without
event processing. This state will be shown on entity detail soon (new frontend component).

Notification

Notification about registered asynchronous processors is prepared, when asynchronous event is
published. Notification is send into topic core:event - uses console log by default and is send to
currently logged identity - e.g. identity is saved, but provisioning will be executed asynchronously.
Localization for asynchronous processors was added on frontend (see key
acc:processor.identity-save-processor).

Configuration

Scheduler - configure internal scheduled tasks for processing events from queue.
Event processing - configure asynchronous event processing
Processors - configure entity event processors.

Predefined processors order

0 - basic / core functionality - operation save, delete etc.
50 - save eav, which are send together with owner's dto
100 - automatic roles computation.
1000 - after save - e.g. sends notifications.
10000 - publish NOTIFY event about entity is changed.
-1000 - before delete provisioning (before identity role is deleted).
Identity:

-2000 - validate password in acc module - checks all system password policies and idm
default policy ⇒ all policies are evaluated in one request. If acc module is enabled, then
core password validation processor can be disabled.
-1000 - validate password in core module - checks idm default policy.
100 - persist password

Contract:
100 - Automatic roles recount while identity contract is saved, updated or deleted /
disabled.
200 - Contract exclusion, end and enable.

LongRunningTask:
100 - execute scheduled long running tasks, which depends on currently ended
scheduled task.

Provisioning:

https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend#scheduler
https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend#entity_events
https://wiki.czechidm.com/devel/documentation/identities/dev/contractual-relationship#invalid_cr

2025/07/12 08:27 11/25 Events - processing of events

IdStory Identity Manager - https://wiki.czechidm.com/

-5000 - check disabled system
-1000 - compute attributes for provisioning (read attribute values from target system)
-500 - check readonly system
0 - execute provisioning (create / update / delete)
1000 - execute after provisioning actions (e.g. sends notifications)
5000 - archive processed provisioning operation.

Other orders can be found directly in application, see supported event types.

Processor configuration

Processors can be configured through ``Configurable`` interface by standard application
configuration.

Implemented processors

Basic processors for simple operations (e.g. save, delete) are not listed. All registered
processors can be listed in agenda (Settings - Modules - Processors).

Automatic roles processors

##
approve create automatic role
idm.sec.core.processor.role-tree-node-create-approve-processor.enabled=true
wf definition
idm.sec.core.processor.role-tree-node-create-approve-processor.wf=approve-
create-automatic-role
##
approve delete automatic role
idm.sec.core.processor.role-tree-node-delete-approve-processor.enabled=true
wf definition
idm.sec.core.processor.role-tree-node-delete-approve-processor.wf=approve-
delete-automatic-role

Notification on change monitored Identity fields

Check if defined fields on identity was changed. If yes, then send notification.
As default is used this system template identityMonitoredFieldsChanged.
Extended attributes is not supported now.
Order of processor is Integer.Max - 100. We want to send notification on end of chain (after
identity is presisted or provisioning are completed).

Identity changed monitored fields - Check if defined fields on identity
was changed. If yes, then send notification.
Default is disabled

https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend#entity_event_processors
https://wiki.czechidm.com/devel/documentation/application_configuration/dev/backend#entity_event_processors

Last update:
2021/08/13 07:18 devel:documentation:architecture:dev:events https://wiki.czechidm.com/devel/documentation/architecture/dev/events

https://wiki.czechidm.com/ Printed on 2025/07/12 08:27

idm.sec.core.processor.identity-monitored-fields-processor.enabled=false
Monitored fields on change (for Identity, extended attributes are not
supported)
idm.sec.core.processor.identity-monitored-fields-
processor.monitoredFields=firstName, lastName
Notification will be send to all identities with this role
idm.sec.core.processor.identity-monitored-fields-
processor.recipientsRole=superAdminRole

Change user permissions workflow

Name of processor "role-request-approval-processor".
This process ensures the approval of the request for change premissions.

Default is enabled
idm.sec.core.processor.role-request-approval-processor.enabled=true
Workflow process for change permissions (as default is "approve-identity-
change-permissions")
idm.sec.core.processor.role-request-approval-processor.wf=approve-identity-
change-permissions

Change user permissions workflow - Approval by the helpdesk department

The approving task will be assigned to all users with role Helpdesk.

The role can be changed in the application configuration
"idm.sec.core.wf.approval.helpdesk.role", the default setting is Helpdesk.
idm.sec.core.wf.approval.helpdesk.role=Helpdesk
Default is disabled
idm.sec.core.wf.approval.helpdesk.enabled=false

Change user permissions workflow - Approval by the manager

The approving task will be assigned to all users evaluated as the managers of the applicant. The
manager is defined based on the industrial relations of the applicant.

Default is disabled
idm.sec.core.wf.approval.manager.enabled=false

Change user permissions workflow - Approval by the user administration
department

The approving task will be assigned to all users with role Usermanager.

The role can be changed in the application configuration
"idm.sec.core.wf.approval.usermanager.role", the default setting is

2025/07/12 08:27 13/25 Events - processing of events

IdStory Identity Manager - https://wiki.czechidm.com/

Usermanager.
idm.sec.core.wf.approval.usermanager.role=Usermanager
Default is disabled
idm.sec.core.wf.approval.usermanager.enabled=false

Hr processes processors

##
HR process - enable identity's contract process. The processes is started
for contracts that are both valid (meaning validFrom and validTill and
disabled state) and
not excluded.
idm.sec.core.processor.identity-contract-enable-processor.enabled=true
wf definition
idm.sec.core.processor.identity-contract-enable-
processor.wf=hrEnableContract
##
HR process - end or delete of identity's contract process. The processes
is started
for contracts that are not valid (meaning validFrom and validTill or
disabled by state) and deleted.
If the processed contract was the last valid contract of the identity,
the identity is disabled.
Additionally all added roles, which were assigned to the ended contract,
are removed by the process.
idm.sec.core.processor.identity-contract-end-processor.enabled=true
wf definition
idm.sec.core.processor.identity-contract-end-processor.wf=hrEndContract
##
HR process - identity's contract exclusion. The processes is started for
contracts that are both valid (meaning validFrom and validTill) and
excluded.
If the processed contract was the last valid contract of the identity,
the identity is disabled.
idm.sec.core.processor.identity-contract-exclusion-processor.enabled=true
wf definition
idm.sec.core.processor.identity-contract-exclusion-
processor.wf=hrContractExclusion

Provisioning after create, update or delete manually added guarantee for
contract

Provisioning after manually add, update or remove guarantee is controlled by these two
processors: ContractGuaranteeSaveProvisioningProcessor and
ContractGuaranteeDeleteProvisioningProcessor. Provisioning for update or create is done
after success save entity, but provisioning for delete is done before delete entity. Both
processors are enabled by default.

Last update:
2021/08/13 07:18 devel:documentation:architecture:dev:events https://wiki.czechidm.com/devel/documentation/architecture/dev/events

https://wiki.czechidm.com/ Printed on 2025/07/12 08:27

Provisioning identity after add or update IdmContractGuaranteeDto
idm.sec.acc.processor.contract-guarantee-save.enabled=true
##
Provisioning identity before IdmContractGuaranteeDto will be removed
idm.sec.acc.processor.contract-guarantee-delete.enabled=true

LongRunningTaskEndProcessor

When some long running task ends, then END event is fired. This processor persists task's state.

LongRunningTaskExecuteDependentProcessor

When some long running task ends, then END event is fired. This processor executes scheduled long
running tasks, which depends on currently ended scheduled task.

ReportGenerateProcessor

Processes GENERATE event type with RptReportDto content, order -1000. Generates output data
for report by long running task.

Enable / disable
idm.sec.rpt.processor.report-generate-processor.enabled=true

ReportGenerateEndProcessor

Processes GENERATE event type with RptReportDto content, order 0. Saves generated report
metadata (binary data are stored as attachment).

Enable / disable
idm.sec.rpt.processor.report-generate-end-processor.enabled=true

ReportGenerateEndSendNotificationProcessor

Processes GENERATE event type with RptReportDto content, order 1000. Sends notification after
report is generated to report creator.

Enable / disable
idm.sec.rpt.processor.report-generate-end-send-notification-
processor.enabled=true

IdentitySetPasswordProcessor

2025/07/12 08:27 15/25 Events - processing of events

IdStory Identity Manager - https://wiki.czechidm.com/

Processes UPDATE event type with IdmIdentityDto content, order 200. When identity starts to be
valid and has at least one account on target system, then new password is generated and changed on
all identity's accounts ⇒ identity ha the same password in all accounts. Notification is send (see
acc:newPasswordAllSystems template) to identity about new password on which accounts.

Identity is starting, when their state is changed from CREATED, NO_CONTRACT, FUTURE_CONTRACT
to the VALID state.

Enable / disable
idm.sec.acc.processor.identity-set-password-processor.enabled=true

EntityEventStartProcessor

Event content: IdmEntityEventDto
Event type: EXECUTE
Default order: -1000

Start execution of entity event.

Enable / disable
idm.sec.core.processor.entity-event-start-processor.enabled=true

EntityEventExecuteProcessor

Event content: IdmEntityEventDto
Event type: EXECUTE
Default order: 0

Enable / disable
idm.sec.core.processor.entity-event-execute-processor.enabled=true

Execute entity event - resurrects entity event and process her - execute all registered processors.

EntityEventEndProcessor

Event content: IdmEntityEventDto
Event type: EXECUTE
Default order: 1000

End execution of entity event - persist state only.

Enable / disable
idm.sec.core.processor.entity-event-end-processor.enabled=true

EntityEventDeleteExecutedProcessor

Event content: IdmEntityEventDto

Last update:
2021/08/13 07:18 devel:documentation:architecture:dev:events https://wiki.czechidm.com/devel/documentation/architecture/dev/events

https://wiki.czechidm.com/ Printed on 2025/07/12 08:27

Event type: EXECUTE
Default order: 5000

Delete successfully executed entity events.

Enable / disable
idm.sec.core.processor.entity-event-delete-executed-processor.enabled=true

RoleCompositionAfterCreateProcessor

@since 9.0.0

Event content: IdmRoleCompositionDto
Event type: NOTIFY
Default order: 0

Assign sub roles for currently assigned roles, after composition (business role) is created. Update role
composition is not supported now - NOTIFY event is propagated, when composition is created only.

Enable / disable
idm.sec.core.processor.core-role-composition-after-create-
processor.enabled=true

IdentityRoleAssignSubRolesProcessor

@since 9.0.0

Event content: IdmIdentityRoleDto
Event type: NOTIFY
Default order: 500

Assign sub roles of currently assigned identity roles:

assign direct sub roles only, works recursively
prevents cycles (just for sure) - adds processed roles into event property

Enable / disable
idm.sec.core.processor.core-identity-role-assign-subroles-
processor.enabled=true

IdentityRoleDeleteAuthoritiesProcessor

Event content: IdmIdentityRoleDto
Event type: DELETE
Default order: Integer.MAX_VALUE

Checks modifications in identity authorities after role removal and disable authentication tokens.

2025/07/12 08:27 17/25 Events - processing of events

IdStory Identity Manager - https://wiki.czechidm.com/

Enable / disable
idm.sec.core.processor.identity-role-delete-authorities-
processor.enabled=true

ContractPositionAutomaticRoleProcessor

@since 9.1.0

Event content: IdmContractPositionDto
Event type: NOTIFY
Default order: 500

Automatic roles recount while contract position is created or updated.

Enable / disable
idm.sec.core.processor.core-contract-position-automatic-role-
processor.enabled=true

FormableSaveProcessor

@since 9.2.0

Event content: FormableDto
Event type: CREATE, UPDATE
Default order: 50

Persists formable entity's (owner's) prepared eav attribute values.

Enable / disable
idm.sec.core.processor.core-formable-save-processor.enabled=true

FormInstanceSaveProcessor

@since 9.2.0

Event content: IdmFormInstanceDto
Event type: UPDATE
Default order: 0

Persists form instance (eav attributes).

Enable / disable
idm.sec.core.processor.core-form-instance-save-processor.enabled=true

RoleCodeEnvironmentProcessor

Last update:
2021/08/13 07:18 devel:documentation:architecture:dev:events https://wiki.czechidm.com/devel/documentation/architecture/dev/events

https://wiki.czechidm.com/ Printed on 2025/07/12 08:27

@since 9.3.0

Event content: IdmRoleDto
Event type: CREATE, UPDATE
Default order: -100

Appends environment into role code. Checks filled code, base code and environment.

Enable / disable
idm.sec.core.processor.core-role-code-environment-processor.enabled=true

Duplicate role processors

Processors

Implemented processors in the product sorted by order of the processing:

DuplicateRolePrepareProcessor

@since 9.5.0

Event content: IdmRoleDto
Event type: DUPLICATE
Default order: -1000

Prepares role's basic properties.

Register custom processor after this processor's order, if some role basic property has
to be overriden (or filled by different business logic).

Enable / disable
idm.sec.core.processor.core-duplicate-role-prepare-processor.enabled=true

DuplicateRoleSaveProcessor

@since 9.5.0

Event content: IdmRoleDto
Event type: DUPLICATE
Default order: 0

Here is the role persisted into database.

Register custom processor after this processor's order, if some related entities has to

https://wiki.czechidm.com/devel/documentation/roles/dev/duplicate-role#processors

2025/07/12 08:27 19/25 Events - processing of events

IdStory Identity Manager - https://wiki.czechidm.com/

be duplicated (e.g. guarantees).

Enable / disable
idm.sec.core.processor.core-duplicate-role-save-processor.enabled=true

DuplicateRoleFormAttributeProcessor

@since 9.5.0

Event content: IdmRoleDto
Event type: DUPLICATE
Default order: 50

Duplicate role form attributes - parameters for the identity (~assigned) roles. Parameters are created
for the target role or updated - extended attribute code is used for pairing.

Parameters provided to the bulk action form:

Duplicate role form attributes - if role form attributes will be duplicated.

Configuration properties:

Enable / disable
idm.sec.core.processor.core-duplicate-role-form-attribute-
processor.enabled=true

DuplicateRoleCompositionProcessor

@since 9.5.0

Event content: IdmRoleDto
Event type: DUPLICATE
Default order: 100

Duplicate configured role composition (sub roles by business role definition) and duplicate sub roles
recursively. If the same environment is selected, the only role composition is created - existing sub
roles are used. If the different environment (~target environment) is used, then sub roles with the
same environment as original are duplicated recursively into target environment.

Parameters provided to the bulk action form:

Duplicate sub roles (by business role definition) - if business role configuration will be
duplicated (recursively).

Overidable methods (can be used for on the projects, e.g. example below):

duplicateRecursively - Returns true, when role should be cloned recursively - can be
overriden, if some role hasn't be cloned recursively, if doesn't exist on the target environment
before.

Last update:
2021/08/13 07:18 devel:documentation:architecture:dev:events https://wiki.czechidm.com/devel/documentation/architecture/dev/events

https://wiki.czechidm.com/ Printed on 2025/07/12 08:27

includeComposition - Returns true, when role composition should be included in the target
role - can be overriden, if some role hasn't be cloned recursively, if doesn't have the same
environment etc.

Configuration properties:

Enable / disable
idm.sec.core.processor.core-duplicate-role-composition-
processor.enabled=true

Custom processor example

Core processor can be disabled and overriden by processor implemented in custom module, if
behavior of the core processor has to be changed.

/**
 * Project specific processor for duplicate role composition.
 */
@Component(CustomDuplicateRoleCompositionProcessor.PROCESSOR_NAME)
@Description("Duplicate role - composition and recursion.")
public class CustomDuplicateRoleCompositionProcessor extends
DuplicateRoleCompositionProcessor {

 public static final String PROCESSOR_NAME = "custom-duplicate-role-
composition-processor";

 @Override
 public String getName() {
 return PROCESSOR_NAME;
 }

 /**
 * Returns true, when role should be cloned recursively
 * - it's not cloned, if application sub role doesn't exist on the
target environment before.
 *
 * @param event processed event
 * @param originalSubRole original sub role
 * @param targetSubRole duplicate sub role. {@code null} if target role
has to be created.
 * @return
 */
 @Override
 public boolean duplicateRecursively(EntityEvent<IdmRoleDto> event,
IdmRoleDto originalSubRole, IdmRoleDto targetSubRole) {
 return (targetSubRole != null && targetSubRole.getId() != null) ||
originalSubRole.getChildrenCount() > 0;
 }

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+component
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/07/12 08:27 21/25 Events - processing of events

IdStory Identity Manager - https://wiki.czechidm.com/

 /**
 * Returns true, when role composition should be included in the target
role
 * - it's not included, when sub role doesn't have the same environment
 *
 * @param event processed event
 * @param composition source composition
 * @return
 */
 @Override
 public boolean includeComposition(EntityEvent<IdmRoleDto> event,
IdmRoleCompositionDto composition) {
 IdmRoleDto subRole = DtoUtils.getEmbedded(composition,
IdmRoleComposition_.sub);
 //
 return Objects.equals(event.getOriginalSource().getEnvironment(),
subRole.getEnvironment());
 }
}

DuplicateRoleAutomaticByTreeProcessor

@since 9.5.0

Event content: IdmRoleDto
Event type: DUPLICATE
Default order: 200

Duplicate configured automatic roles by tree structure. Automatic roles are duplicated recursively, if
composition is duplicated recursively (see DuplicateRoleCompositionProcessor above).

Parameters provided to the bulk action form:

Duplicate automatic roles - if automatic roles will be duplicated (both by tree structure and
attribute).

Configuration properties:

Enable / disable
idm.sec.core.processor.core-duplicate-role-automatic-by-tree-
processor.enabled=true

DuplicateRoleAutomaticByAttributeProcessor

@since 9.5.0

Event content: IdmRoleDto
Event type: DUPLICATE
Default order: 300

Last update:
2021/08/13 07:18 devel:documentation:architecture:dev:events https://wiki.czechidm.com/devel/documentation/architecture/dev/events

https://wiki.czechidm.com/ Printed on 2025/07/12 08:27

Duplicate configured automatic roles by attribute. Automatic roles are duplicated recursively, if
composition is duplicated recursively (see DuplicateRoleCompositionProcessor above).

Parameters provided to the bulk action form:

Duplicate automatic roles - if automatic roles will be duplicated (both by tree structure and
attribute).

Configuration properties:

Enable / disable
idm.sec.core.processor.core-duplicate-role-automatic-by-attribute-
processor.enabled=true

2019/03/15 11:47 · tomiskar

Example

Synchronous processor

If we want to get hooked after updating the identity, we should implement a processor to the
event type IdentityEventType.UPDATE with an order number higher than 0:

@Enabled(ExampleModuleDescriptor.MODULE_ID)
@Component("exampleLogIdentityUpdateSyncProcessor")
@Description("Logs after identity is updated")
public class LogIdentityUpdateSyncProcessor
 extends CoreEventProcessor<IdmIdentityDto>
 implements IdentityProcessor {

 /**
 * Processor's identifier - has to be unique by module
 */
 public static final String PROCESSOR_NAME = "log-identity-update-sync-
processor";
 private static final org.slf4j.Logger LOG = org.slf4j.LoggerFactory
 .getLogger(LogIdentityUpdateSyncProcessor.class);

 public LogIdentityUpdateSyncProcessor() {
 // processing identity UPDATE event only
 super(IdentityEventType.UPDATE);
 }

 @Override
 public String getName() {
 // processor's identifier - has to be unique by module
 return PROCESSOR_NAME;
 }

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+component
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/07/12 08:27 23/25 Events - processing of events

IdStory Identity Manager - https://wiki.czechidm.com/

 @Override
 public EventResult<IdmIdentityDto> process(EntityEvent<IdmIdentityDto>
event) {
 // event content - identity
 IdmIdentityDto updateddIdentity = event.getContent();
 // log
 LOG.info("Identity [{},{}] was updated.",
updateddIdentity.getUsername(), updateddIdentity.getId());
 // result
 return new DefaultEventResult<>(event, this);
 }

 @Override
 public int getOrder() {
 // right after identity update
 return CoreEvent.DEFAULT_ORDER + 1;
 }
}

Asynchronous processor

If we want to implement the same feature as above but asynchronously, we can process
asynchronous IdentityEventType.NOTIFY instead IdentityEventType.UPDATE. When we
need to change synchronous processors to asynchronous, we can simply change processed event
type and add some condition, when only some original event types has to be processed ⇒
asynchronous NOTIFY event type is published for CREATE, UPDATE and EAV_SAVE event types.

@Enabled(ExampleModuleDescriptor.MODULE_ID)
@Component("exampleLogIdentityUpdateAsyncProcessor")
@Description("Logs after identity is updated")
public class LogIdentityUpdateAsyncProcessor
 extends CoreEventProcessor<IdmIdentityDto>
 implements IdentityProcessor {

 /**
 * Processor's identifier - has to be unique by module
 */
 public static final String PROCESSOR_NAME = "log-identity-update-async-
processor";
 private static final org.slf4j.Logger LOG = org.slf4j.LoggerFactory
 .getLogger(LogIdentityUpdateAsyncProcessor.class);

 public LogIdentityUpdateAsyncProcessor() {
 // processing identity NOTIFY event only
 super(IdentityEventType.NOTIFY);
 }

 @Override
 public boolean conditional(EntityEvent<IdmIdentityDto> event) {
 // we want to process original UPDATE event only

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+component
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last update:
2021/08/13 07:18 devel:documentation:architecture:dev:events https://wiki.czechidm.com/devel/documentation/architecture/dev/events

https://wiki.czechidm.com/ Printed on 2025/07/12 08:27

 // async NOTIFY event is published for CREATE, UPDATE, EAV_SAVE
event types
 return super.conditional(event)
 &&
IdentityEventType.UPDATE.name().equals(event.getProperties().get(EntityEvent
Manager.EVENT_PROPERTY_PARENT_EVENT_TYPE));
 }

 @Override
 public String getName() {
 // processor's identifier - has to be unique by module
 return PROCESSOR_NAME;
 }

 @Override
 public EventResult<IdmIdentityDto> process(EntityEvent<IdmIdentityDto>
event) {
 // event content - identity
 IdmIdentityDto updateddIdentity = event.getContent();
 // log
 LOG.info("Identity [{},{}] was updated.",
updateddIdentity.getUsername(), updateddIdentity.getId());
 // result
 return new DefaultEventResult<>(event, this);
 }

 @Override
 public int getOrder() {
 // notify event has their own process line - we can use default
order
 return CoreEvent.DEFAULT_ORDER;
 }
}

Future development

Skip duplicate event in "the bigger window".
Support to persist confidential event properties.
Support retry failed events
Create FE component with entity state
Notification about failed events (or report)
Automatic role event doesn't propagate parent event id ⇒ processed by LRT.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/07/12 08:27 25/25 Events - processing of events

IdStory Identity Manager - https://wiki.czechidm.com/

From:
https://wiki.czechidm.com/ - IdStory Identity Manager

Permanent link:
https://wiki.czechidm.com/devel/documentation/architecture/dev/events

Last update: 2021/08/13 07:18

https://wiki.czechidm.com/
https://wiki.czechidm.com/devel/documentation/architecture/dev/events

	Events - processing of events
	Event lifecycle
	Event types
	Entities with event support
	Basic interfaces
	Basic classes
	AbstractEntityEventProcessor
	AsyncEntityEventProcessor
	AbstractInitApplicationProcessor

	Transactions
	Event properties
	Asynchronous event processing
	Features
	Process event from queue
	Event priority
	Execute date
	Parent event
	Event parameters
	Remove duplicate events
	Entity state
	Notification

	Configuration

	Predefined processors order
	Processor configuration
	Implemented processors
	Automatic roles processors
	Notification on change monitored Identity fields
	Change user permissions workflow
	Change user permissions workflow - Approval by the helpdesk department
	Change user permissions workflow - Approval by the manager
	Change user permissions workflow - Approval by the user administration department
	Hr processes processors
	Provisioning after create, update or delete manually added guarantee for contract
	LongRunningTaskEndProcessor
	LongRunningTaskExecuteDependentProcessor
	ReportGenerateProcessor
	ReportGenerateEndProcessor
	ReportGenerateEndSendNotificationProcessor
	IdentitySetPasswordProcessor
	EntityEventStartProcessor
	EntityEventExecuteProcessor
	EntityEventEndProcessor
	EntityEventDeleteExecutedProcessor
	RoleCompositionAfterCreateProcessor
	IdentityRoleAssignSubRolesProcessor
	IdentityRoleDeleteAuthoritiesProcessor
	ContractPositionAutomaticRoleProcessor
	FormableSaveProcessor
	FormInstanceSaveProcessor
	RoleCodeEnvironmentProcessor
	Duplicate role processors
	DuplicateRolePrepareProcessor
	DuplicateRoleSaveProcessor
	DuplicateRoleFormAttributeProcessor
	DuplicateRoleCompositionProcessor
	Custom processor example
	DuplicateRoleAutomaticByTreeProcessor
	DuplicateRoleAutomaticByAttributeProcessor

	Example
	Synchronous processor
	Asynchronous processor

	Future development

