2025/06/11 03:46 1/6 Modularity

Modularity

modularity, frontend, backend, architecture, installation

C!) TODO: Introduction

Backend

After discussing the topic, Spring Plugin was chosen as a framework for ensuring backend modularity.
Compared to other considered frameworks such as OSGi or Microservices, it is the simplest option
based on interfaces, their implementations and registration of these implementations for their use in
the application. The accepted disadvantage is application server restart after installing a module
(module = .jar package).

Installation/ module update

Installation/ module update is done by copying the module into the application libraries
<idm.war>/WEB-INF/lib. Modules can also be included directly in the project dependencies
(pom.xml modul app).

Module descriptor - ModuleDescriptor

Each module installed in the application must have its descriptor - ModuleDescriptor. The descriptor
contains the metadata about the module:

¢ unique identifier of the module (the module is referred to by the identifier everywhere).

e module version

e whether the module can be removed / disabled - some modules are essential for the application
(core, the ecosystem itself ...)

e descriptive metadata: name, description, provider

e permissions added within the module

e in the future, the information about dependent modules in specific versions will be added in the
modules, e.g. module acc version 1.3.8 will be dependent on the core version 1.0.0 to 1.5.0,
and the like

All modules - their descriptors - are registered at the start of the application and can be managed
through service ModuleService providing mainly:

* the list of installed modules * the list of permitted modules * enabling/ disabling of the module -
linked to configuration service IdmConfigurationService. By convention, item
idm.pub.<identifikator_ modulu>.enabled is used for determining of an enabled / disabled
module. This item gains boolean value.

IdStory Identity Manager - https://wiki.czechidm.com/

https://wiki.czechidm.com/tag/modularity?do=showtag&tag=modularity
https://wiki.czechidm.com/tag/frontend?do=showtag&tag=frontend
https://wiki.czechidm.com/tag/backend?do=showtag&tag=backend
https://wiki.czechidm.com/tag/architecture?do=showtag&tag=architecture
https://wiki.czechidm.com/tag/installation?do=showtag&tag=installation
https://github.com/spring-projects/spring-plugin
https://github.com/bcvsolutions/CzechIdMng/blob/master/Realization/backend/core/core-api/src/main/java/eu/bcvsolutions/idm/core/api/domain/ModuleDescriptor.java
https://github.com/bcvsolutions/CzechIdMng/blob/master/Realization/backend/core/core-api/src/main/java/eu/bcvsolutions/idm/core/api/service/ModuleService.java

Last update:
2018/03/23 devel:documentation:architecture:dev:modularity https://wiki.czechidm.com/devel/documentation/architecture/dev/modularity
10:00

Database scripts

Each module can contain its own database scripts.

Example module

The example module was created for module demonstration and, at the same time, as a template
(skeleton) for creating a module with pre-filled configurations. It contains:

* pom.xml - dependency settings * module descriptor - descriptor * flyway configuration - for db
initialization

If the example is used for creating a new module, the key word example has to be replaced with
another unique module identifier and then various descriptions (module name, description, etc.) can
be added. For future uses, it is planned to create a maven archetype or other module skeleton
generator.

Enabling / disabling of module

An agenda which shows the list of installed modules and enables enabling / disabling of modules
which support this function (see descriptor) was created on the frontend.

After disabling of a module, all the services (e.g. rest) must become unavailable. This is done by
annotation IfEnabled, which, after adding it over a service or an individual method (definition over a
service has a higher priority), ensures a control over the enabled module or configuration item before
calling a service / method itself. Calling a service of a disabled module ends in exception
ModuleDisabledException or rather ConfigurationDisabledException.

If a frontend module is linked to / dependent on a backend module, it is also disabled.
TODO:

* checking of module id uniqueness at the start of application * maven archetype for generating the
module skeleton

Frontend

The goal of frontend modularity was to fulfill the following scenario:

1. A standard version of CzechldM (e.g. 7.0) is installed on the frontend server.

2. The administrator downloads a czechidm (npm) module, which he loads in folder czechidm-
modules (in module czechidm-app).

3. The administrator runs a compilation (command gulp build see more in the installation
manual)

4. By doing that, a new module was registered in the application and its content is displayed to
the user in the application (including integration of individual menus, user desktops, etc.)

https://wiki.czechidm.com/ Printed on 2025/06/11 03:46

https://wiki.czechidm.com/devel/documentation/architecture/dev/flyway
https://github.com/bcvsolutions/CzechIdMng/tree/master/Realization/backend/example
https://github.com/bcvsolutions/CzechIdMng/blob/master/Realization/backend/core/core-api/src/main/java/eu/bcvsolutions/idm/security/api/domain/IfEnabled.java
https://github.com/bcvsolutions/CzechIdMng/blob/master/Realization/frontend/README.md
https://github.com/bcvsolutions/CzechIdMng/blob/master/Realization/frontend/README.md

2025/06/11 03:46 3/6 Modularity

Application building

Building of a frontend application including its modules is done by the Gulp building tool. The
definition of the building process is save in file gulpfile.babel.js. This file contains a series of tasks
which are run in a fixed order during building:

clean - Deletes previous build (folder /dist)
makeModules - Crates symlinks to node_modules of the application for all modules found in
"czechidm-modules" folder, (as shown in Project Structure chapter).

loadModules - Finds all "module-descriptor.js" in node_modules of the application (thanks to
the symlinks finds modules in czechidm-modules as well). For each module found, it generates
a line for adding a link to the module descriptor, where the module ID is used as the key (will be
used in moduleAssembler).

createModuleAssembler - Creates a resulting moduleAssembler.js which will contain links to
all the module descriptors of the installed modules. The default moduleAssembler.js is in the
czechidm-app/src module. It is possible to add a descriptor into the default moduleAssembler
for modules different from the ones created at building. Adding the loaded modules is done by
replacing the compile mark (<compile mark>) in the default assembler with lines generated in
the previous task. The resulting moduleAssembler.js is created in folder "/dist".
loadModuleStyles - Loading of styles from individual modules. The llocation of the main less
file is defined in the module descriptor of the correspondent module in the item mainStyleFile'
(e.g. 'src/css/main.less'). The location of all the main styles is saved in 'paths.srcincludedLess'
for further processing

loadModuleRoutes - Finds the definition file route for the given module. Route is a definition
of the url and the content which should be used for it. The path to the main file defining module
routes can be found in the module descriptor in item "mainRouteFile". It will generate a line for
adding a link to the definition for each route definition found, where the module ID is used as
the key.

createRouteAssembler - Creates a resulting routeAssembler.js which will contain links to all
the installed modules' routes. The default routeAssembler.js is located in the czechidm-app/src
module. It is possible to add a route into the default moduleAssembler for modules different
from the ones created at building. Adding the loaded modules is done by replacing the compile
mark (<compile mark>) in the default assembler with lines generated in the previous task. The
resulting moduleAssembler.js is created in folder "/dist".

loadModuleComponents - Finds the definition file of the components for the given module. A
component is some content from the module which can be used in other modules thanks to a
definition in the component descriptor. The path to the main file defining module components
can be found in the module descriptor in item "mainComponentDescriptorFile". It will generate
a line for adding a link to the definition for each component definition found, where the module
ID is used as the key.

createComponentAssembler - Creates a resulting routeAssembler.js which will contain links
to all the installed modules' components. The default componentAssembler.js is located in the
czechidm-app/src module. It is possible to add a route into the default componentAssembler for
modules different from the ones created at building. Adding the loaded modules is done by
replacing the compile mark (<compile mark>) in the default assembler with lines generated in
the previous task. The resulting componentAssembler.js is created in folder "/dist".

themes This task is responsible for the correct selection of the application theme. The main
theme (the path to it) is defined in the configuration under "theme", for example "czechidm-
core/themes/default", which means that, in this case, this theme is located in the czechidm-core

IdStory Identity Manager - https://wiki.czechidm.com/

https://github.com/bcvsolutions/CzechIdMng/blob/master/Realization/frontend/gulpfile.babel.js
https://github.com/bcvsolutions/CzechIdMng/blob/master/Realization/frontend/czechidm-app/src/modules/moduleAssembler.js
https://github.com/bcvsolutions/CzechIdMng/blob/master/Realization/frontend/czechidm-app/src/modules/routeAssembler.js
https://github.com/bcvsolutions/CzechIdMng/blob/master/Realization/frontend/czechidm-app/src/modules/componentAssembler.js

Last update:
2018/03/23 devel:documentation:architecture:dev:modularity https://wiki.czechidm.com/devel/documentation/architecture/dev/modularity
10:00

module in the themes/default folder. All image (in '/images/') will be copied into the "/dist"
folder. All the less styles (in '/css/') will be added into the variable 'paths.srcincludedLess' (it will
be processed in the next tasks).

e runTest - Runs all the mocha tests in all the installed modules (finds all the tests in the folder
[test recursively).

e config - Generates the resulting application configuration. The selection of configuration is
done on the basis of input parameters (stage, profile) at compilation execution. The resulting
configuration is saved in the "/dist" folder.

* urlConfig - Generates a configuration file for an external change in selected application
parameters. It takes over 'serverUrl' from the main configuration. The resulting file is saved in
the "/dist" folder.

e styles - It run a compilation of less styles. The main less style is saved in '‘czechidm-
app/src/css/main.less'. Imports of other less styles acquired in previous tasks are included in
this file (styles of individual modules, main theme styles). The resulting css is saved in the
"/dist" folder.

* loadModuleLocales Copies all the locales located on the path which is defined in the module
descriptor in the 'mainLocalePath' item to the "/dist" folder.

* browserify - Generates a resulting javascript 'app.js' containing all the javascripts from the
used modules and saves it in the "/dist" folder.

Project structure

Below is the structure of the project and its modules. The folder containing all npm modules
“node_modules" (in the main module czechidm-app) is designed as a symlink. Its actual location is
one level higher which was necessary to prevent an error with more copies of ReactJS (see
https://facebook.github.io/react/warnings/refs-must-have-owner.html).

This error occurs in a situation when one installation of the React npm module is in 'czechidm-
app/node_modules' and the other in its submodule 'czechidm-app/node_modules/czechidm-
core/node_modules'. In this case the error described above occurs.

A solution is to remove the duplicate installation from React from the submodule. If this submodule
isn't really located under the file czechidm-app but for example next to it (in reality, it is in this way in
the repository), then czechidm-core will find no installation of React. The reason is that NPM looks for
modules in node_modules and if it doesn't find them, it moves on to a higher level recursively.
Because of that, the main node_modules folder is (and must be) located above all czechidm
modules (app, core, acc, etc.)

/project
L—node modules
| |

L—~czechidm-core (symlink to czechidm-modules/czechidm-core)
|
L —~czechidm-example (symlink to czechidm-modules/czechidm-example)

|
|
|
|
L—czechidm-app
|
|
|

|
L_—~node modules (symlink to parent node modules)
|

https://wiki.czechidm.com/ Printed on 2025/06/11 03:46

https://facebook.github.io/react/warnings/refs-must-have-owner.html

2025/06/11 03:46 5/6 Modularity

L_dist (final compiled source for web server)
I
L —czechidm-modules

L—czechidm-core

|
L—node modules

| main.less

L 1locales
CcsS.json

L —themes

module descriptor.js
routes.js

component descriptor.js
package. json

L—node modules

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| L—czechidm-example
| |

| |

|

Project structure (developer mode)

The structure is almost the same as in the previous "production" example. The difference is in the
location of submodules, which aren't under the 'czechidm-app' folder but next to it (real location in
the repository). Symlinks to these submodules are placed in 'czechidm-app/czechidm-modules/' for
that reason.

/project
L—node modules
| |

L ~czechidm-core (symlink to czechidm-modules/czechidm-core)

L ~czechidm-example (symlink to czechidm-modules/czechidm-example)

|

|

|

|

L czechidm-app
|

L ——~node modules (symlink to parent node modules)

I

|

I

| L _—dist (final compiled source for web server)
I I

| L_czechidm-modules

| I

|

|

L ~czechidm-core (symlink to folder with czechidm-core module)

IdStory Identity Manager - https://wiki.czechidm.com/

Last update:
2018/03/23 devel:documentation:architecture:dev:modularity https://wiki.czechidm.com/devel/documentation/architecture/dev/modularity
10:00

| L ——~czechidm-example (symlink to folder with czechidm-example
module)

L czechidm-core

|
L—node modules

|
L src

|
L gas

I

I

| | main.less
I I

| L locales
| Cs.json

I

L—themes

module descriptor.js
routes.js

component descriptor.js
package.json

L czechidm-example
|
| L—node modules

From:
https://wiki.czechidm.com/ - IdStory Identity Manager

Permanent link: !
https://wiki.czechidm.com/devel/documentation/architecture/dev/modularity e 4

Last update: 2018/03/23 10:00

https://wiki.czechidm.com/ Printed on 2025/06/11 03:46

https://wiki.czechidm.com/
https://wiki.czechidm.com/devel/documentation/architecture/dev/modularity

	Modularity
	Backend
	Installation/ module update
	Module descriptor - ModuleDescriptor
	Database scripts
	Example module
	Enabling / disabling of module

	Frontend
	Application building
	Project structure
	Project structure (developer mode)

