
2025/06/13 12:24 1/8 Provisioning

IdStory Identity Manager - https://wiki.czechidm.com/

Provisioning
identity, provisioning

Provisioning ensures the implementation of accounts settings on target systems according to the
settings in IdM. The provisioning itself then only propagates information to the target system. It does
not make the evaluation of which identities should be subject to provisioning on a particular system.
This is the task of accounts management which is an integral part of IdM and precedes the
provisioning itself.

Provisioning is an integral part of the ACC module (Account management)

Since version 9.4.0 are lists in provisioning compares independent on order of
values. For example: If value from IdM is [A,B,C] and value from the system [C,A,B],
then this values are for provisioning same. It means none provisioning on system will
be executed. If you need to ensure that comapring of lists will be dependent on value
order, then you can override method isAttributeValueEquals in service
ProvisioningService.

As it has been already said, the provisioning is preceded by accounts management. In most cases,
provisioning is therefore run by the service ensuring accounts management. If this service evaluates
that such a change of the account which requires provisioning has occurred, it will call the service
ProvisioningService. This service includes the following methods:

doProvisioning(AbstractDto dto) - will do the provisioning for all the accounts themselves
and systems related to a given dto (e.g. dto for identity, role, role catalogue, tree node).
doProvisioning(AccAccountDto account) - will do the provisioning for this account (for the
dto to which the account is related and which is marked as the account owner)
doProvisioning(AccAccountDto account, AbstractDto dto) - will do the provisioning for
this account and for the given dto (in case a link to the account marked as the "account
owner").
doDeleteProvisioning(AccAccountDto account) - will delete the account from the target
system
changePassword(AbstractDto dto, PasswordChangeDto passwordChange) - will change
the password of a given dto (mainly is used for identity) also on the systems which have been
set in the PasswordChangeDto object (contains also a new password). In PasswordChangeDto is
collection AccAccountDto and for them will be change password.
doProvisioningForAttribute - enables to do the provisioning only for a specific attribute. This
is for example what needs to be done to change the password.
authenticate - will perform the authentication test on the target system for a given username
and system.

The term account owner stands for the link between an dto and an account (e.g.
AccIdentityAccoutnDto). Provisioning is done exclusively for the links which are
marked as the account owner. Otherwise such a link is only an "informational" one.
For example, the administrator´s account may have more identities, but only its owner

https://wiki.czechidm.com/tag/identity?do=showtag&tag=identity
https://wiki.czechidm.com/tag/provisioning?do=showtag&tag=provisioning
https://github.com/bcvsolutions/CzechIdMng/blob/develop/Realization/backend/acc/src/main/java/eu/bcvsolutions/idm/acc/service/api/ProvisioningService.java

Last
update:
2021/04/26
14:26

devel:documentation:provisioning:dev:provisioning https://wiki.czechidm.com/devel/documentation/provisioning/dev/provisioning

https://wiki.czechidm.com/ Printed on 2025/06/13 12:24

may change it.

Supported dto types

Provisioning is implemented for:

IdmIdentityDto - identities
IdmRoleDto - roles
IdmRoleCatalogueDto - role catalogue items
IdmTreeNodeDto - tree nodes (structures)

Provisioning operation life cycle

When dto (e.g. identity, see above) is changed, then update (create, delete) event on this dto is
fired.
in acc module are event processors, which processes update event on supported dto types and
calls provisioning for updated dto - see above
ProvisioningService.doProvisioning(dto).
ProvisioningService resolves concrete provisioning executor implementation
(ProvisioningEntityExecutor<DTO>) for given dto and calls
ProvisioningEntityExecutor<DTO>.doProvisioning ⇒ provisioning can be
implemented different way for each supported dto type. Standard implementation is in
AbstractProvisioningEntityExecutor - use this class, when provisioning for new dto
type will be needed (contains some boring parts etc.).
ProvisioningEntityExecutor<DTO> finds all dto's accounts and starts provisioning for
them - fires ProvisioningEvent START with account as content. This is one place, when
some module specific processor can extend provisioning functionality - see
ProvisioningStartProcessor. As you can see - accounts has to be prepared before.
Accounts are created by account management. Account contains identifier only in this step -
account management executes transformation for identifiers and creates / prepares accounts
with them.
ProvisioningStartProcessor is default processor (order 0), which processes
ProvisioningEvent START and calls
ProvisioningEntityExecutor<DTO>.doInternalProvisioning(account, dto). In
this step is SysSystemEntityDto found (by account identifier) or created (as "wish") for given
account. SysSystemEntityDto is entity on the target system - we need to know real identifier
on target system, which could be different with account identifier, etc.. Account attributes
are evaluated for given account (create "wish" - what IdM want's to be provisioned to target
system. Attributes transformation to the target system are called here). At last, provisioning
operation (SysProvisioningOperationDto) is constructed with account attributes ("wish")
and system entity (SysSystemEntityDto). Created provisioning operation is given to the
provisioning executor (ProvisioningEntityExecutor), which operates above provisioning
queue. He is responsible for assigning SysProvisioningBatch for given provisioning
operation (read more bellow) and then he puts operation into the queue for processing ⇒
persists given SysProvisioningOperationDto with state CREATED. All provisioning

https://wiki.czechidm.com/devel/documentation/accounts/dev/account-management

2025/06/13 12:24 3/8 Provisioning

IdStory Identity Manager - https://wiki.czechidm.com/

operations are stored in the queue. Operations in the queue can be processed two ways:
synchronously - ProvisioningEntityExecutor fires UPDATE (CREATE, DELETE)
event with SysProvisioningOperationDtocontent immediately, when provisioning
operation is persisted. This is the default way. Then the queue is used as provisioning log,
if everything is processed successfully. If some ProvisioningException occurs, then
operation remains in the queue with state EXCEPTION and can be canceled or executed
again (e.g. when target system was unavailable). Look out, make sure you handle all
exceptions, which could be thrown in your custom provisioning processor and throw
ProvisioningException descendants only (used @Transactional mechanism can
handle ProvisioningException only and doesn't do rollback for them - this is needed
to persist exception reason and operation state in the queue).
asynchronously - target system can be switched to use asynchronous provisioning, then
ProvisioningEntityExecutor doesn't fire an event immediately. Long running task
ProvisioningQueueTaskExecutor works above queue and fires event periodically for
created operations placed in the queue. The same rule for ProvisioningException
applies here.

When UPDATE (CREATE, DELETE) event with SysProvisioningOperationDto content is
fired ⇒ there is the place, where provisioning to target system really starts. Respectively - this
is the place, when provisioning operation processing begins. All processors registered for
SysProvisioningOperationDto content (see package
eu.bcvsolutions.idm.acc.event.processor.provisioning) are executed in defined
order (default):

-5000: DisabledSystemProcessor - checks disabled system before provisioning is
called. If system is disabled, then operation remains in the queue as NOT_EXECUTED
and event processing ends.
-1000: PrepareConnectorObjectProcessor - actually changed attributes (connector
attributes) are evaluated by given account attributes ("wish") and their strategies. Target
system is contacted - processor reads attributes on target system, creates diff (by
attribute strategy etc.) and results are stored in provisioning operation context as
connector attributes (actually changed attributes). This attributes can be found in
provisioning operation detail - left side is the "wish" (IdM account attributes after
transformations), right side is connector attributes (actually changed attributes). Used
provisioning attributes are logged here, after connector object is prepared.
-500: ReadonlySystemProcessor - checks readonly system before provisioning is
called. If system is readonly, then operation remains in the queue as NOT_EXECUTED
and event processing ends. This mode can be used for debugging, if target system is
online and we need to know, which attributes will be really provisioned.
0: ProvisioningCreateProcessor, ProvisioningUpdateProcessor,
ProvisioningDeleteProcessor - execute provisioning to target system.
5000: RemoveProcessedOperationProcessor - successfully processed (or canceled)
provisioning operation is moved from the queue to the archive. Archive is used as log.
Archive can be truncated. When operation is moved into archive, then all used
provisioning attributes are moved into archive too (is still available to find archived
operation by used attributes).

Provisioning queue

All provisioning operations are processed through provisioning queue. The individual provisioning
operations (create, update, delete) are serialized, saved in the queue, and then processed. If

https://wiki.czechidm.com/devel/documentation/application_configuration/dev/scheduled_tasks/task-scheduler#provisioningqueuetaskexecutor
https://wiki.czechidm.com/devel/documentation/systems/dev/system-mapping#mapped_attribute_strategy

Last
update:
2021/04/26
14:26

devel:documentation:provisioning:dev:provisioning https://wiki.czechidm.com/devel/documentation/provisioning/dev/provisioning

https://wiki.czechidm.com/ Printed on 2025/06/13 12:24

provisioning operation is completed, then archive provisioning operation record is created ⇒ active
provisioning operation is executed and is moved into archive.

Three entities was created to persist provisioning operations and their state:

SysProvisioningOperation - active (unresolved) provisioning operations. Contains
operation type, state and provisioning context with transformed attributes ("wish" from IdM
account), which have to be provisioned and really provisioned attributes (connector attributes),
read more below.
SysProvisioningBatch - container for active provisioning operations for one system entity
on one system. Aggregates active operations for single dto (e.g. identity, role), respectivelly for
their system entity. When provisioning fails or is stopped (e.q. when system is switched to be
read only, disabled, asynchronous), then all provisioning operations for single system entity are
grouped in one batch. Operations can be executed in the same order, as they was inserted into
queue ⇒ preserve system entity state on target system. Operations from queue are processed
by their batch ⇒ respectively batches are processed from queue.
SysProvisioningArchive - archived (processed) provisioning operations - logged
operations. Last archived provisioning operation can be used for getting provisioned context
with contains really provisioned attributes.

Supported provisioning operation states:

CREATED - newly created, not processed operation
EXECUTED - the operation was successfully executed
EXCEPTION - there was an exception during execution
NOT_EXECUTED - the operation was not executed because of some reason - operation for the
same entity is already in the queue, readonly system etc.
CANCELED - canceled by some reason (administrator etc.)

To extend or reconfigure the provisioning mechanism, the processing has been moved to the events
on the dto SysProvisioningOperationDto and to the individual processors treating this dto (the
list of the registered processors has been extracted to the application on the module page). Calling
the provisioning then takes places through publishing the events with the
SysProvisioningOperationDto content through ProvisioningExecutor. The individual
operations are serialized, persisted in the queue, and transmitted to the processors. If a
ProvisioningException occurs or some of the processors stops working, then it is possible to find
what happened in the agenda placed above the queue (error code, return state etc.). The
GuardedStrings (e.g. passwords) are not saved in the serialized state - the values are replaced and
saved in a confidential storage from which they are only read when needed (account re-calculation,
provisioning implementation).

Make sure you handle all exceptions, which could be thrown in your custom
provisioning processor and throw ProvisioningException descendants only (used
@Transactional mechanism can handle ProvisioningException only and
doesn't do rollback for them - this is needed to persist exception reason and operation
state in the queue).

The operation content in SysProvisioningOperationDto is called ProvisioningContext and is

https://wiki.czechidm.com/devel/documentation/security/dev/confidential-storage

2025/06/13 12:24 5/8 Provisioning

IdStory Identity Manager - https://wiki.czechidm.com/

divided into two logical units:

accountObject - counted account attributes according to the set-up mapping on the IdM page
⇒ wish.
connectorObject - real attributes sent to provisioning counted after contacting the target
system (reading of the existent object and changes comparison).

First the accountObject ("wish"), then the connectorObject which is the real provisioning input
is calculated. When repeating the operation, a new connectorObject from an accountObject is
always calculated so that the possible changes which could occur right on the target system are taken
into consideration.

Once the object (defined by the identifier on the system and the idm entity) is in the queue, all the
other requests for the provisioning of the same objects are persisted and remains in the queue -
consistent sequence of operations on one object in the target system.

Provisioning queue functions:

Start provisioning - provisioning is started by publishing START event on IdM account, then
provisioning operation for this account is created and inserted into queue for processing.
Disabled system - requests for provisioning stays in the queue with state ``NOT_EXECUTED``.
The target system is not contacted at all.
Read only system - requests for provisioning are prepared, the actually changed attributes on
the target system are counted, the request is persisted and stays in the queue as
``NOT_EXECUTED``. The check and reading of the original existing object on the target system
take place - this is how the real operation UPDATE vs. CREATE is specified, if the object exists /
does not exist on the target system. An active operation for provisioning does not take place.
Retry mechanism - the requests ending with an error are persisted in the queue and new
running time is scheduled to them = another attempt will be executed by long running task
RetryProvisioningTaskExecutor.
Possibility of asynchronous processing - target system can be switched to use
asynchronous provisioning.
Break configuration

More about attribute strategies (attributes merge and etc.) is here.

Provisioning attributes

Entity SysProvisioningAttribute contains attributes used in provisioning context connector
object. Provisioning attribute fields:

name - schema attribute name. Attribute name on the target system.
removed - flag indicates, if attribute is used in context with empty value (null, empty) ⇒
attribute will be removed on the target system.

Is possible to filter provisioning operations and archives with used attributes. Is possible to filter
empty provisioning (~ without attributes). Active provisioning operations in the queue are evaluated
as empty only if attributes was already computed (after prepare provisioning object processor), so
can be used for redonly systems, but only the first operation contains attributes (other operations are

https://wiki.czechidm.com/devel/documentation/application_configuration/dev/scheduled_tasks/task-scheduler#retryprovisioningtaskexecutor
https://wiki.czechidm.com/devel/documentation/provisioning/dev/break
https://wiki.czechidm.com/devel/documentation/systems/dev/system-mapping#mapped_attribute_strategy

Last
update:
2021/04/26
14:26

devel:documentation:provisioning:dev:provisioning https://wiki.czechidm.com/devel/documentation/provisioning/dev/provisioning

https://wiki.czechidm.com/ Printed on 2025/06/13 12:24

put into queue without attributes).

Older records (created before version 9.6.3 was installed) will be filtered as
empty provisioning without attributes (attributes are empty).

Retry mechanism

Provisioning operations ending with an error are persisted in the queue and new running time is
scheduled to them = another attempt will be executed by long running task periodically - long
running task RetryProvisioningTaskExecutor configuration is needed. Only failed operations are
processed from queue by retry mechanism.

Asynchronous provisioning

Target system can be switched to use asynchronous provisioning - flag on the system detail. Then
requests for active provisioning operations (create, update, delete) are persisted in the queue as
``CREATED`` and their processing is delayed. Operations in queue are processed by long running task
ProvisioningQueueTaskExecutor, which operates above the queue periodically and starts
``CREATED`` provisioning operation processing. Make sure you have ProvisioningQueueTaskExecutor
configured, if you have some target system switched to use asynchronous provisioning.

Change password operation is still synchronous - is needed to change passwords
immediately.

https://wiki.czechidm.com/_detail/devel/documentation/provisioning/dev/provisioningdetailrec.gif?id=devel%3Adocumentation%3Aprovisioning%3Adev%3Aprovisioning
https://wiki.czechidm.com/devel/documentation/application_configuration/dev/scheduled_tasks/task-scheduler#retryprovisioningtaskexecutor
https://wiki.czechidm.com/devel/documentation/application_configuration/dev/scheduled_tasks/task-scheduler#provisioningqueuetaskexecutor
https://wiki.czechidm.com/devel/documentation/application_configuration/dev/scheduled_tasks/task-scheduler#provisioningqueuetaskexecutor

2025/06/13 12:24 7/8 Provisioning

IdStory Identity Manager - https://wiki.czechidm.com/

Provisioning of attachment

attachment

Since version 9.4.0 is supported provisioning for EAV attributes with attachment.

During provisioning is loaded `IdmAttachmentDto` first (by ID of attachment stored in the EAV
attribute value). `IdmAttachmentDto` contains metadata (as file name, size, …), but doesn't
contains data. For it was created DTO `IdmAttachmentWithDataDto`, where was added field data
(byte array). Then are loaded data for this attachment and given input-stream is converted to the
array of bytes. From this moment is value (for EAV attribute with attachment) replaced by instance of
`IdmAttachmentWithDataDto` (contains metadata + data). It means the transformation to the system
will have as input value (attributeValue) this new DTO.

Structure of IdmAttachmentWithDataDto is here.

This DTO is useful in situation when we need to do provisioning for some attachment's metadata field
(for example name of file). In this case we only need to create transformation to the system:

// Transformation for get name of file
if (attributeValue != null) {
 return attributeValue.getName();
}
return attributeValue;

Example of use

We have system with attribute image-attribute. That attribute has in the schema type array of
bytes ([B).
This attribute is mapped on EAV attribute image. It means for this attribute exists EAV
attribute definition too.

The EAV attribute must have the Attachment type set.

If provisioning for identity where attachment for EAV attribute image exist is executed, then
data (in byte array format) are propagated to the system (image-attribute).

None additional transformation is required. Load of attachment and transformation
to the byte array is automatical (if transformation to the system is blank).

https://wiki.czechidm.com/tag/attachment?do=showtag&tag=attachment
https://github.com/bcvsolutions/CzechIdMng/blob/develop/Realization/backend/acc/src/main/java/eu/bcvsolutions/idm/acc/domain/IdmAttachmentWithDataDto.java

Last
update:
2021/04/26
14:26

devel:documentation:provisioning:dev:provisioning https://wiki.czechidm.com/devel/documentation/provisioning/dev/provisioning

https://wiki.czechidm.com/ Printed on 2025/06/13 12:24

From:
https://wiki.czechidm.com/ - IdStory Identity Manager

Permanent link:
https://wiki.czechidm.com/devel/documentation/provisioning/dev/provisioning

Last update: 2021/04/26 14:26

https://wiki.czechidm.com/
https://wiki.czechidm.com/devel/documentation/provisioning/dev/provisioning

	Provisioning
	Supported dto types
	Provisioning operation life cycle
	Provisioning queue
	Provisioning attributes
	Retry mechanism
	Asynchronous provisioning
	Provisioning of attachment
	Example of use

