
2025/07/03 23:51 1/4 Using Scripted JDBC connector

IdStory Identity Manager - https://wiki.czechidm.com/

Using Scripted JDBC connector
jdbc, connector

Configuration

The configuration is done using standard JDBC setting, i.e. setting a proper URL template, JDBC driver
etc. We are mainly interested in configuring the CRUD operation scripts. You can either:

set script path on filesystem (recommended)
set an inline script (recommended only for deployments without FS)

If you run CzechIdM on appliance, you can place the scripts inside /data/volumes/czechidm/data/
folder, create e.g. a folder /data/volumes/czechidm/data/ourSystemScripts. Then the script path
configured in CzechIdM will be e.g. /opt/czechidm/data/ourSystemScripts/search.groovy.

Another useful setting is "Reload script on execution" (reloadScriptOnExecution), which mainly helps
during the development stage. This option should be turned off in production, because reloading
(recompiling) the Groovy scripts takes time and memory. However, when you need to upgrade the
script and this option is turned off, then you have to restart IdM, otherwise the new version of the
script wouldn't be loaded. Don't turn on the option "Reload script on execution" only temporarily,
because it may not preserve the loaded newer version of the script, after you turn the option off
again!

Pooling configuration

We recommed using the connector pool when connectiong systems with this connector. This will
make connecting to the datasource more effective. Also, this connector has a suspected memory leak
when compiling groovy scripts repeatedly, which is avoided if connector pooling is enabled and
"Reload script on execution" is disabled (see above)

Schema attributes

While retrieving account data from target system (the SEARCH operation), the connector requires us
to set both __NAME__ and __UID__ attributes unconditionally. Both must be Strings. Therefore
you are required to do this manually in your SEARCH script. Following is an example of retrieving user
data:

import groovy.sql.Sql
import groovy.transform.Field

@Field UID_ATTR = "id_column"
@Field TABLE_NAME = "abc_users_table"

def sql = new Sql(connection)
def result = []

https://wiki.czechidm.com/tag/jdbc?do=showtag&tag=jdbc
https://wiki.czechidm.com/tag/connector?do=showtag&tag=connector
https://wiki.czechidm.com/devel/documentation/systems/dev/system-mapping#connector_pool_configuration
http://www.google.de/search?q=site%3Agroovy.codehaus.org/%20import
http://www.google.de/search?q=site%3Agroovy.codehaus.org/%20import
http://www.google.de/search?as_q=Field&num=100&hl=en&as_occt=url&as_sitesearch=java.sun.com%2Fj2se%2F1%2E5%2E0%2Fdocs%2Fapi%2F
http://www.google.de/search?as_q=Field&num=100&hl=en&as_occt=url&as_sitesearch=java.sun.com%2Fj2se%2F1%2E5%2E0%2Fdocs%2Fapi%2F
http://www.google.de/search?q=site%3Agroovy.codehaus.org/%20def
http://www.google.de/search?q=site%3Agroovy.codehaus.org/%20new
http://www.google.de/search?q=site%3Agroovy.codehaus.org/%20Sql
http://www.google.de/search?q=site%3Agroovy.codehaus.org/%20def

Last
update:
2025/06/26
09:54

devel:documentation:systems:dev:scripted-jdbc-connector https://wiki.czechidm.com/devel/documentation/systems/dev/scripted-jdbc-connector

https://wiki.czechidm.com/ Printed on 2025/07/03 23:51

String select = "SELECT * FROM $TABLE_NAME ${getWhere(query)}"
sql.eachRow(select, { row ->
 def res = [:]
 res.put("__UID__", row[UID_ATTR])
 res.put("__NAME__", row[UID_ATTR])
 row.getMetaData().collect({ m -> m.columnName })
 .each({ column -> res.put(column, convertAttribute(column,
row[column])) })
 result.add(res)
})
return result

All retrieved attributes must be a list of maps (look for result and res objects in the example
above). This is crucial for SEARCH connector method to work properly.

Another 'catch' the connector has is that the __NAME__ is a required input of the CREATE operation.
Since it is not expected that you have any column called "__NAME__" in your database schema, this
leaves you pretty much two options how to handle the attribute in your installation:

ignore the attribute in your script1.
always rename the attribute in the script2.

The first option expects that you have an additional attribute __NAME__ in your system mapping in
CzechIdM, which maps to the exactly same value as your mapping system identifier. Lets say we have
a user's table USERS with 1 columns: LOGIN - identifier. In such case we create a new system in
CzechIdM and while configuring the system schema, we create two attributes:

LOGIN
__NAME__

Then in mapping we check the LOGIN attribute as identifier and choose however we want to fill its
value. The only difference with __NAME__ attributes is that we will not check the identifier checkbox,
otherwise it stays the same.

The second option requires that all of your CRUD scripts handle the __NAME__ attribute in a special
way. For example you can rename it to your ID column name. This way of handling the identifier is
rather straightforward, but causes high pollution of your JDBC scripts with non-reusable code.

Using groovy SQL

Groovy has a powerful yet simple mechanism of querying databases through JDBC implemented in
the groovy.sql.Sql class. However one has to be really careful and precise while using groovy's
Sql with identity connector framework's (ICF) Attribute objects, because of its loose typing system.

All values of ICF Attribute are of type java.lang.Object. To put it simply, typing does not exist here and
the developer must handle it manually. If you only send simple attributes such as Strings, there is
probably no need to worry about your queries. However mixing types together may cause
unpredictable results.

http://www.google.de/search?as_q=String&num=100&hl=en&as_occt=url&as_sitesearch=java.sun.com%2Fj2se%2F1%2E5%2E0%2Fdocs%2Fapi%2F
http://www.google.de/search?q=site%3Agroovy.codehaus.org/%20eachRow
http://www.google.de/search?q=site%3Agroovy.codehaus.org/%20def
http://www.google.de/search?q=site%3Agroovy.codehaus.org/%20collect
http://www.google.de/search?q=site%3Agroovy.codehaus.org/%20each
http://www.google.de/search?q=site%3Agroovy.codehaus.org/%20return

2025/07/03 23:51 3/4 Using Scripted JDBC connector

IdStory Identity Manager - https://wiki.czechidm.com/

For example lets say we have a table USERS with columns ID (int) and LOGIN (varchar) and we want
to select a row where ID = 123. So we will do something like this:

def id = 123
def retrieved = sql.firstRow("SELECT * FROM USERS WHERE ID = ? LIMIT 1",
[id])
println retrieved

Now everything should work just fine and we get our desired row printed out. But what if id is a
String? Meaning what if we pass def id = '123'? Here we get some unpredictable behaviour.
When using PostgreSQL, the query will deliberately fail with an exception. But on MySQL everything
works just fine.

The danger with ICF Attributes is that these contain a value field - a list of values the Attribute carries.
But if you accidentally call myString.value on a String parameter, you get an object of type class
[C. The funny thing is that your query will still pass on MySQL, but will not return anything (most
probably). Therefore always check your types while using groovy Sql!

List of input variables

Following is a list of input variables you can expect in JDBC scripts.

CREATE script

connection: SQL connection
action: String correponding to the action ("CREATE" here)
log: a handler to the Log facility
objectClass: a String describing the Object class
id: The entry identifier (OpenICF "Name" atribute. (most often matches the uid)
attributes: an Attribute Map, containg the String attribute name as a key and the List
attribute value(s) as value.
password: password string, clear text
options: a handler to the OperationOptions Map

SEARCH script (GET)

connection: handler to the SQL connection
objectClass: a String describing the Object class
action: a string describing the action ("SEARCH" here)
log: a handler to the Log facility
options: a handler to the OperationOptions Map
query: a handler to the Query Map

UPDATE script

The connector sends us the following:

http://www.google.de/search?q=site%3Agroovy.codehaus.org/%20def
http://www.google.de/search?q=site%3Agroovy.codehaus.org/%20def
http://www.google.de/search?q=site%3Agroovy.codehaus.org/%20println

Last
update:
2025/06/26
09:54

devel:documentation:systems:dev:scripted-jdbc-connector https://wiki.czechidm.com/devel/documentation/systems/dev/scripted-jdbc-connector

https://wiki.czechidm.com/ Printed on 2025/07/03 23:51

connection : SQL connection
action: String correponding to the action (UPDATE / ADD_ATTRIBUTE_VALUES /
REMOVE_ATTRIBUTE_VALUES)
UPDATE: For each input attribute, replace all of the current values of that attribute in the target
object with the values of that attribute
ADD_ATTRIBUTE_VALUES: For each attribute that the input set contains, add to the current
values of that attribute in the target object all of the values of that attribute in the input set.
REMOVE_ATTRIBUTE_VALUES: For each attribute that the input set contains, remove from the
current values of that attribute in the target object any value that matches one of the values of
the attribute from the input set.
log: a handler to the Log facility
objectClass: a String describing the Object class
uid: a String representing the entry uid
attributes: an Attribute Map, containg the String attribute name as a key and the List
attribute value(s) as value.
password: password string, clear text (only for UPDATE)
options: a handler to the OperationOptions Map

DELETE script

connection: handler to the SQL connection
action: a string describing the action ("DELETE" here)
log: a handler to the Log facility
objectClass: a String describing the Object class
options: a handler to the OperationOptions Map
uid: String for the unique id that specifies the object to delete

From:
https://wiki.czechidm.com/ - IdStory Identity Manager

Permanent link:
https://wiki.czechidm.com/devel/documentation/systems/dev/scripted-jdbc-connector

Last update: 2025/06/26 09:54

https://wiki.czechidm.com/
https://wiki.czechidm.com/devel/documentation/systems/dev/scripted-jdbc-connector

	Using Scripted JDBC connector
	Configuration
	Pooling configuration

	Schema attributes
	Using groovy SQL
	List of input variables
	CREATE script
	SEARCH script (GET)
	UPDATE script
	DELETE script

