
2024/04/05 10:46 1/12 The CAW driver

CzechIdM Identity Manager - https://wiki.czechidm.com/

The CAW driver

The CAW driver is our native certificate authority driver. In essence, it is a shell script encompassing
ordinary OpenSSL certificate authority. This has many pros:

If you can do it in openssl.cnf, you can do it in CAW too.
Supported on any Linux/UNIX platform which has openssl, bash and coreutils. Also supported on
MinGW.
Readable script that is easy to debug and fix. Anyone can do it.
You can migrate almost any existing CA into the CAW.

Migrate certificates, keys(optional) and CSRs. Each of those files have to be named by
serial number of the corresponding certificate.
Construct openssl certificate db (plain text file of given format). If you have the data, this
can be done with a few hours of scripting.

Native support for PKCS#11 crypto tokens.
Also, we give out almost totally preconfigured CAW instance and installation instructions.
Also, the deployment is simply unpacking CAW into a folder. Need another CA instance? Unpack
CAW into another folder.

It also has some cons:

There are plenty of bad openssl.cnf tutorials on the internet. Seriously. We are fighting it by
heavily commenting the CAW-supplied configuration but that is basically all we can do about it.

OpenSSL integration with PKCS#11 tokens is not something that "just works". It may be version-
, token- or distribution-dependent. But if you make it work with plain openssl, you can easily
integrate it into CAW.
The CA is not concurrent. The CAW handles it by pessimistic locking.

The CAW script

CAW is a shell wrapper above the OpenSSL-based certificate authority (abbreviated: OSSL CA). It
allows you to use the OSSL CA in a similar way the EasyRSA does. CAW is primarily created as a CA
backend for the CzechIdM Certificate Authority module but it is possible to extend/incorporate it
somewhere else. It also provides an user-friendly CA implementation which can be used right away
from the command line.

For the list of capabilities and input/output formats, please refer to the CAW shell script. Simply run
CAW to get the usage screen where you can find everything you will ever need. :)

./caw
Unknown command '' specified.
Usage: ./caw command [--param1 value1 --param2 value2 ...]
...
COMMAND create-key-and-cert - generates new private key, CSR and signs a
certificate
OUTPUT
 Success: Serial number of the issued certificate written
onto STDOUT. Return code 0.

Last update: 2022/04/12 08:39 tutorial:adm:caw_driver https://wiki.czechidm.com/tutorial/adm/caw_driver

https://wiki.czechidm.com/ Printed on 2024/04/05 10:46

 Error: Error message on STDERR. Return code 1.
PARAMETERS
--country countryName. Mandatory.
--state stateOrProvinceName. Mandatory.
--locality localityName. Mandatory.
--org organizationName. Mandatory.
--ou organizationalUnitName. Mandatory.
--cn commonName. Mandatory.
--mail emailAddress. Mandatory.
--pass private key passphrase. Mandatory.
... and so on ...

In its core, CAW uses a well-known OSSL CA all with its openssl.cnf file and such. Therefore every
configuration which can be specified in openssl.cnf can be made available in the CAW. CAW makes
use of openssl.cnf as often as possible (i.e. with defaults for the openssl req command) and
very often invokes openssl using -batch argument.

But beware, CAW has also its own configuration file caw_settings.source. This file contains
some options that need to be in sync with options in ca_openssl.cnf. So if you are fiddling with
ca_openssl.cnf, always also check caw_settings.source.

Additional information can be found in one of those three places:

In the CAW usage page. Simply invoke ./caw.
As a comment in the caw_settings.source file.
As a comment in the CAW script itself (i. e. authors, changelog, TODOs).

Core functions

Self-contained CA
CAW does not depend on the global /etc/openssl.cnf, it brings its own
ca_openssl.cnf along. That means, your CA is completely separated from others.
You can run different CAs just by giving each its own folder.
Installation is merely unpacking a tarball and generating CA certificate and starting serial
number.

Handling concurrency problems
OpenSSL CA (openssl ca …) must not be invoked in multiple instances at the same
time. CAW uses lockdir to prevent that.

Private key and CSR private storage
CAW archives all files it has created, including users' private keys and CSRs. Private keys
all always AES-encrypted by a password which the end-user specifies. Therefore even the
CA does not have an access to the private key.

Support for hardware tokens using PKCS11
If your OpenSSL version can support your hardware token, you can use it in CAW. Only
thing you need to do is to configure it in ca_openssl.cnf and
caw_settings.source (and there is already a template for that).

Unix-like style of invocation
Everything that goes into the CAW is a command line argument. Everything that goes
out of the CAW is either a output of successful operation (on STDOUT) or an error (on
STDERR).

2024/04/05 10:46 3/12 The CAW driver

CzechIdM Identity Manager - https://wiki.czechidm.com/

Return code for successful operation is 0, for error it is 1.
All information going to/from CAW is in printable form, large data mainly as PEM or
base64-encoded.

Usable as a root or intermediary CA
CAW allows additional certificates to be added to the chain when downloading a particular
cetificate. This can be used to supply all parts of the certificate chain from the issuing CA
to the root CA. If no such additional certificates are specified, CAW acts as a root CA.

Private key and certificate creation
When user supplies just the SubjectDN components, the private key, CSR and
certificate are automatically generated. You can validate the SubjectDN components by
regex-based engine.

CSR signing
User-provided CSR is checked for sufficient signature algorithm and for SubjectDN
components. CAW makes sure the comparison is text-based (by regexes) and does not
care about datatypes. This effectively solves usability problems with OpenSSL's
policy_match in heterogenous environments.

Certificate prolongation
Because CAW stores CSRs, it is possible to prolong certificate by reissuing it with new
validity period. All that is needed is certificate's serial number.
CAW will not allow the expired/revoked certificate to be reissued.
This is not a big security risk because for access the CSRs, an attacker must have access
to the machine running the CA. If he does, you have much bigger problem than some
accessible CSR.

Certificate revocation
Revoke certificate just by specifying its serial number and revocation reason.

Certificate database querying
CAW provides basic interface to query certificate database and for certificate validation.

Certificate bundling
When the issued certificate is requested for download, user can specify if he wants it to
be bundled with private key and/or whole certificate chain.
When requesting the bundle with private key, user must specify the password he has
given during the certificate creation.

CRL issuing and publishing
CAW enables you to create CRLs just by calling ./caw create-crl. Another user can
then publish the CRL into public destination by calling ./caw publish-crl.

Housekeeping tasks
CAW takes care of orphan files and similar things that can happen during the life of CA. All
those tasks are done by ./caw housekeep.

Installation

Create separate user for your authority. Ensure that no other user can read the home1.
directory. This happens for example on the (open)SuSE where each home is granted to the
users group which encompasses all users.

[root@ca ~]# useradd -r -m -s /bin/bash authority1

Move the CAW directory to the user's home.2.

[root@ca ~]# mv caw.tgz /home/authority1/
[root@ca authority1]# tar xzf caw.tgz

Last update: 2022/04/12 08:39 tutorial:adm:caw_driver https://wiki.czechidm.com/tutorial/adm/caw_driver

https://wiki.czechidm.com/ Printed on 2024/04/05 10:46

[root@ca authority1]# ll
total 28
drwxr-xr-x 4 1000 users 4096 Aug 24 14:36 caw
-rw-r--r-- 1 root root 24563 Aug 24 15:16 caw.tgz
[root@ca authority1]# chown -Rf authority1:authority1 caw/
[root@ca authority1]# chmod 750 caw

Ensure that caw script is runnable.3.

[root@ca authority1]# cd caw/
[root@ca caw]# chmod 750 caw

Create new starting serial number. This number can be, say, 01 but there is a caveat attached4.
to this - OpenSSL then works with 8bit serial mode (this is potentially dangerous). Better
way is to create truly random 128bit serial number as the example shows.

[root@ca caw]# cd ca/
[root@ca ca]# openssl rand -hex 16 > serial

If you want to use serial number prefixes, now it is the time to set it up. If you don't know5.
what it is, you can safely skip this step. Suppose the random serial was
b1676557ad077ef7144c227d16a55025. Then we simply edit the starting serial to have our
desired prefix (say, aaaccc000). Total length of the serial number must remain 128b, so our
new serial will be aaaccc000d077ef7144c227d16a55025. Write it into the serial file. We
can, possibly, overflow to the prefix aaaccc001 so be aware of it - our "prefix" is not a real
prefix. It is merely a cleverly chosen starting number.
Generate your CA certificate the usual way. For how to set it up with PKCS11 crypto token, see6.
the end of this document. Select the appropriate private key size. Also, there are x509v3
certificate extensions which are handy to have in the authority's certificate. Default are in
ca_crt.extensions file. Edit them (and command line parameters in the example below)
according to your needs.

[root@ca ca]# su - authority1
[authority1@ca ~]$ cd caw/ca/
[authority1@ca ca]$ pwd
/home/authority1/caw/ca
[authority1@ca ca]$ openssl genrsa -out private/ca.key 2048
[authority1@ca ca]$ chmod 400 private/ca.key
[authority1@ca ca]$ openssl req -new -in private/ca.key -out ca.csr -
key private/ca.key
[authority1@ca ca]$ openssl x509 -req -in ca.csr -signkey
private/ca.key -days 1000 -out ca.crt -sha256 -extfile
../ca_crt.extensions
[authority1@ca ca]$ rm ca.csr

CAW folder comes with a number of empty directories. Although needless now, they are7.
automatically used by the caw script for managing the authority. Do not delete them.
Check the ca_openssl.cnf configuration file and configure your authority. This file is an8.
ordinary openssl.cnf, but is realized in local variant. This enables multiple caw-based CAs to
coexist one along the other just by separating their directories. The ca_openssl.cnf
contains preconfigured CA so only small adjustments should be necessary. Follow the
comments in the file itself. The most important things to set up are:

2024/04/05 10:46 5/12 The CAW driver

CzechIdM Identity Manager - https://wiki.czechidm.com/

Enable (configure) the PKCS11 engine or disable it entirely (comment it out).1.
Configure default_days and default_crl_days and other certificate-related2.
settings.
Configure parameters in the req stanza - those are used for generating new keys and3.
requests.
Configure certificate extensions in the issued_cert_ext stanza. Do not forget to set4.
up the crlDistributionPoints correctly.

Check the caw_settings.source configuration file and configure it accordingly. The tricky9.
part there is that some settings have to have the same values as in ca_openssl.cnf. Again,
the comments in the file will help you. The most important things to set up are:

Configure CA_OSSL_ENGINE_PARAM if you want to use PKCS11 token. Set it to an1.
empty string if you store the CA's private key in the file.
Configure the CA_OSSL_ROOT_CHAIN if your CAW authority is not the root authority.2.
Configure the SubjectDN and CSR validation prefixes. This also lets you set a basic3.
policy for user's passphrase complexity. Also, set allowed signature algorithms.

If you do not use PKCS11 crypto token (that is, you want to use ca.key), deconfigure10.
PKCS11 engine template according to this howto.
Generate the empty CRL file.11.

[authority1@ca caw]$./caw create-crl

You should be good to go. Follow the examples and try to obtain your first certificate.12.

Examples

Create private key and certificate1.

[root@ca ~]# ./caw create-key-and-cert --country CZ --state "Czech
Republic" --locality Prague --org BCV --ou TEST --cn user.test.bcv --
pass demodemo
0C0774BACDF2CA2A52BEEF68A0F1D411

Prolong certificate2.

[root@ca ~]# ./caw prolong-cert --serial
0C0774BACDF2CA2A52BEEF68A0F1D411
0C0774BACDF2CA2A52BEEF68A0F1D412

Download (private key,certificate,certificate chain) bundle from the CA3.

[root@ca ~]# ./caw get-cert --serial 0C0774BACDF2CA2A52BEEF68A0F1D411 -
-with-pkey --pass demodemo --with-chain
MIIKoQIBAzCCCmcGCSqGSIb3DQEHAaCCClgEggpUMIIKUDCCBQcGCSqGSIb3DQEHBqCCBPg
wggT0
...
FbAM6nS5jJYQ4s4VKDElMCMGCSqGSIb3DQEJFTEWBBRGj5/LUBZtcz/k+N96L7RzdleanDA
xMCEw
CQYFKw4DAhoFAAQUCqImx0Un2qmtSACpEWD4i2ivunMECFJnEuzDIEtHAgIIAA==

Revoke a certificate4.

Last update: 2022/04/12 08:39 tutorial:adm:caw_driver https://wiki.czechidm.com/tutorial/adm/caw_driver

https://wiki.czechidm.com/ Printed on 2024/04/05 10:46

[root@ca ~]# ./caw revoke-cert --serial
0C0774BACDF2CA2A52BEEF68A0F1D411 --reason keyCompromise

Refresh the CRL5.

[root@ca ~]# ./caw create-crl

Example of CAW driver configuration in Appliance

Create a new folder. It is possible to add more authorities to this folder. Each authority has its1.
own caw folder, caw script and own configuration caw_settings.source and ca_openssl.cnf.In this
example, use only one CA.

[root@ca ~]# mkdir /data/volumes/czechidm/cert-authority

Unzip caw driver to caw directory. Caw driver can be downloaded from our git repository:CAW.2.

[root@ca ~]# unzip caw-master.zip -d /data/volumes/czechidm/cert-
authority/
[root@ca ~]# mv /data/volumes/czechidm/cert-authority/caw-master
/data/volumes/czechidm/cert-authority/caw

In this example we received from customer already generated CA certificate - private key public3.
key customerCa.key, public key customerCa.pem and configuration file customerCa.conf.Copy a
files to caw directory and replace our default test ca.

[root@ca ~]# cp customerCa.key /data/volumes/czechidm/cert-
authority/caw/ca/private/ca.key
[root@ca ~]# cp customerCa.pem /data/volumes/czechidm/cert-
authority/caw/ca/ca.pem

We use random random 128bit serial number.4.

[root@ca ~]# cd /data/volumes/czechidm/cert-authority/caw/ca/
[root@ca ca]# openssl rand -hex 16 > serial

It is also necessary to merge customerCa.conf file with the caw configuration file ca_openssl.cnf5.
and caw_settings.source. The ca_openssl.cnf and caw_settings.source contains preconfigured
CA. Follow the comments in the files and edit files by customerCa.conf.
Set a correct permision and owner. .6.

[root@ca czechidm]# chown -Rf 999:998 cert-authority/
[root@ca czechidm]# chmod 400 cert-authority/caw/ca/private/ca.key
[root@ca czechidm]# chmod 750 cert-authority/
[root@ca czechidm]# cd cert-authority/caw/
[root@ca caw]# chmod 750 caw

It is necessary to directory cert-authority mount into a CzechIdM container, because the caw7.
script must be executable by IdM. To file /data/registry/node-active-config/docker-compose-
czechidm.yml add:

https://github.com/bcvsolutions/caw

2024/04/05 10:46 7/12 The CAW driver

CzechIdM Identity Manager - https://wiki.czechidm.com/

 - type: bind
 source: /data/volumes/czechidm/cert-authority
 target: /opt/cert-authority
 read_only: false

An important part of ca is the CRL file, which must be generated regularly. CAW creates CRL by8.
calling ./caw create-crl. Create the .service unit that will generate CRL file. Create new file in
/usr/lib/systemd/system/iam-crl-refresh.service

[Unit]
Description=CRL refreshing
After=network.target docker.service
[Service]
Type=simple
ExecStart=/usr/bin/docker exec czechidm /opt/cert-authority/caw/caw
create-crl

Create a .timer unit file which actually schedules the .service unit you just created. Create it in9.
the same location as the .service file. The service is started every hour.

[Unit]
Description=CzechIdM refresh CRL
After=network.target docker.service
[Timer]
OnCalendar=*-*-* *:00:00
[Install]
WantedBy=multi-user.target

Enable new service and timer:10.

[root@ca czechidm]# systemctl enable iam-crl-refresh.service iam-crl-
refresh.timer

The crl has to be available via a web proxy. First, you must mount the file in the Web Proxy11.
container. to file /data/registry/node-active-config/docker-compose-web-proxy.yml add:

 - type: bind
 source: /data/volumes/czechidm/cert-authority/caw/ca/crl/ca.crl
 target: /etc/nginx/crl/ca.crl
 read_only: true

To make the file available from web proxy it is necessary to modify a file /data/volumes/web-12.
proxy/config/reverse_proxy.conf and add:

 - location /crl/ca.crl {
 root /etc/nginx/;
 }

Then the crl file is available at URL:https://iam.appliance.tld/crl/ca.crl

The next step is to configure our crl module ca directly in IdM. Instructions for configuration in13.
IdM are here: crt module tutorial

https://iam.appliance.tld/crl/ca.crl
https://wiki.czechidm.com/tutorial/adm/modules_crt

Last update: 2022/04/12 08:39 tutorial:adm:caw_driver https://wiki.czechidm.com/tutorial/adm/caw_driver

https://wiki.czechidm.com/ Printed on 2024/04/05 10:46

Deconfiguring default PKCS11 engine

By default, CAW comes with a preconfigured template for the PKCS11-enabled crypto engine. In some
deployments, this is not necessary and the goal is to have CA's private key and certificate stored on
the machine's filesystem. This short howto will show you how to swap preconfigured PKCS11 engine
for the more usual setup.

The ca_openssl.cnf file has several sections, referred as "stanzas". Stanza starts with [stanza
name] and ends when another stanza starts.

To deconfigure the PKCS11 template:

Edit the ca_openssl.cnf file.1.
Comment out openssl_conf = openssl_init at the top of the file.1.
Comment out whole [openssl_init] stanza.2.
Comment out whole [engine_section] stanza.3.
Comment out whole [pkcs11_engine] stanza.4.
In the [CA_default] stanza, uncomment the private_key = … line. Set it to a path5.
to your private key or create private key in the $dir/private/ca.key path. The key
has to have at most 600 (-rw\-\-\-\-\-\-\-) privileges.

Edit the caw_settings.source file.2.
Set the CA_OSSL_ENGINE_PARAM="…" to CA_OSSL_ENGINE_PARAM="" (empty1.
variable).

Configuring CAW with the PKCS11 crypto token

DISCLAIMER: This howto is flawed in terms of overall security. Therein, we describe
how to generate private key and then store it in the PKCS11 token. The token we use
is SoftHSM, which is not a real physical token. To make it truly secure, you have to (at
least):

Use real hardware crypto token.
Generate CA private key directly on the token (via openssl, p11-tool or such).
The private key pin (and security pin) really should not be 1234 (or 123456
respectively). Use reasonably strong pins.

If you modify the example below according to those remarks, then your
setup should be secure enough.

First, we generate the CA private key. This is not secure, but it is quicker for demonstration1.
purposes. For more info, see the disclaimer.

[root@ca ~]# openssl genrsa -out ca.key 4096

Create the CA CSR.2.

[root@ca ~]# openssl req -new -key ca.key -out ca.csr -sha512

2024/04/05 10:46 9/12 The CAW driver

CzechIdM Identity Manager - https://wiki.czechidm.com/

Create the CA certificate with appropriate extensions.3.

[root@ca ~]# openssl x509 -req -days 3650 -in ca.csr -signkey ca.key -
out ca.crt -sha512 -extfile ca_extensions.txt

SoftHSM needs the key to be in PKCS8 format. The default generated from OpenSSL is PKCS5 so4.
we have to convert it. Also, using -nocrypt option is a bad idea. But, again, we should be
generating private key directly on the token.

[root@ca ~]# openssl pkcs8 -in ca.key -topk8 -out ca_pk8.key -nocrypt

Suppose the SoftHSM is installed and configured. The SoftHSM's default data dir is in /var so you5.
have to run it as root or reconfigure the data directory location - see the next section on how to
configure SoftHSM to run under non-root user. Anyway, we first init the token and then import
the CA private key.

[root@ca ~]# softhsm2-util --init-token --slot 0 --label ca --so-pin
123456 --pin 1234
The token has been initialized.
[root@ca ~]# softhsm2-util --pin 1234 --so-pin 123456 --import
ca_pk8.key --label ca --id A1B2 --no-public-key --slot 0
The key pair has been imported.

We have to link our token with openssl and test the setup. If everything goes right, we get the6.
output similar to this one:

[root@ca ~]# openssl engine -t dynamic -pre
SO_PATH:/usr/lib64/openssl/engines/pkcs11.so -pre ID:pkcs11 -pre
LIST_ADD:1 -pre LOAD -pre MODULE_PATH:/usr/lib64/pkcs11/libsofthsm2.so
-pre VERBOSE -pre PIN:1234
(dynamic) Dynamic engine loading support
Success: SO_PATH:/usr/lib64/openssl/engines/pkcs11.so
Success: ID:pkcs11
Success: LIST_ADD:1
Success: LOAD
Success: MODULE_PATH:/usr/lib64/pkcs11/libsofthsm2.so
Success: PIN:1234
Loaded: (pkcs11) pkcs11 engine
 [available]

Now create the user certificate request the usual way and try to sign it with the CA. We have7.
stored ours in user.csr. We will also need an identifier of the PKSC11 token, which we can get by
invoking softhsm2-util –show-slots. Certificate signing should look basically like this (we
used openssl shell in this snippet):

[root@ca usercert]# openssl
OpenSSL> engine -t dynamic -pre
SO_PATH:/usr/lib64/openssl/engines/pkcs11.so -pre ID:pkcs11 -pre
LIST_ADD:1 -pre LOAD -pre MODULE_PATH:/usr/lib64/pkcs11/libsofthsm2.so
-pre VERBOSE -pre PIN:1234
(dynamic) Dynamic engine loading support
Success: SO_PATH:/usr/lib64/openssl/engines/pkcs11.so

Last update: 2022/04/12 08:39 tutorial:adm:caw_driver https://wiki.czechidm.com/tutorial/adm/caw_driver

https://wiki.czechidm.com/ Printed on 2024/04/05 10:46

Success: ID:pkcs11
Success: LIST_ADD:1
Success: LOAD
Success: MODULE_PATH:/usr/lib64/pkcs11/libsofthsm2.so
Success: VERBOSE
Success: PIN:1234
Loaded: (pkcs11) pkcs11 engine
PKCS#11: Initializing the engine
Found 2 slots
 [available]
OpenSSL> x509 -req -engine pkcs11 -CAkeyform engine -CAkey slot_0-
label_ca -CA ca.crt -days 1000 -set_serial 15 -sha256 -in user.csr -out
user.crt
PKCS#11: Initializing the engine
Found 2 slots
engine "pkcs11" set.
Signature ok
subject=/C=CZ/ST=Czech Republic/L=Prague/O=BCV/OU=TEST/CN=user.test.bcv
Getting CA Private Key
Loading private key "slot_0-label_ca"
Looking in slot 0 for key: label=ca
[0] SoftHSM slot 0 login (ca)
[1] SoftHSM slot 1 uninitialized, login (no label)
Found slot: SoftHSM slot 0
Found token: ca
Found 0 certificate:
No private keys found.
Loading private key "slot_0-label_ca"
Looking in slot 0 for key: label=ca
[0] SoftHSM slot 0 login (ca)
[1] SoftHSM slot 1 uninitialized, login (no label)
Found slot: SoftHSM slot 0
Found token: ca
Found 0 certificate:
Found 1 private key:
1 P id=ffffffa2ffffffb2 label=ca
^C

Then we can verify the signing was correct:8.

[root@ca usercert]# openssl verify -CAfile ca.crt user.crt
user.crt: OK

This tells us that openssl integration with the PKCS11 engine is working. To configure it in CAW,9.
edit the [engine] section in the ca_openssl.cnf and supply the values you just used on the
command line.
The last step is to configure CA_OSSL_ENGINE_PARAM variable in the10.
caw_settings.source file. There is already template for that, the only value that needs
changing should be an identifier of the PKCS11 slot.

2024/04/05 10:46 11/12 The CAW driver

CzechIdM Identity Manager - https://wiki.czechidm.com/

Using SoftHSM under non-root user

SoftHSM is not a real crypto token. It is very handy during development but not meant
for high-security production use.

We are installing SoftHSM on CentOS 7 operating system. Then, we will configure it to run under
authority1 OS user.

Add the EPEL repository and install necessary packages.1.

[root@ca ~]# yum install epel-release
[root@ca ~]# yum install softhsm opensc engine_pkcs11

Check if there is a system-wide configuration file.2.

[root@ca ~]# cat /etc/softhsm2.conf
SoftHSM v2 configuration file
directories.tokendir = /var/lib/softhsm/tokens/
objectstore.backend = file
ERROR, WARNING, INFO, DEBUG
log.level = INFO

We have two options:3.
Change the system-wide configuration to point to a directory the authority1 user can
access.
Create local configuration file. This is better in cases where we want to have separate
SoftHSM token storages.

We go for the second option. First, we change to the authority1 user and create our directory4.
structure and config file.

[root@ca ~]# su - authority1
[authority1@ca ~]$ pwd
/home/authority1
[authority1@ca ~]$ mkdir -pv softhsm/tokens
mkdir: created directory ‘softhsm’
mkdir: created directory ‘softhsm/tokens’
[authority1@ca ~]$ chmod 750 softhsm
[authority1@ca ~]$ vim softhsm/softhsm2.conf
[authority1@ca ~]$ cat softhsm/softhsm2.conf
directories.tokendir = /home/authority1/softhsm/tokens/
objectstore.backend = file
ERROR, WARNING, INFO, DEBUG
log.level = INFO

SoftHSM is managed with the softhsm2-util program. This program reads environment5.
variable SOFTHSM2_CONF. When the variable is not defined, it uses configuration
/etc/softhsm2.conf. We will export the variable with proper path to config file. If you
modified the system-wide config, you can skip this step.

[authority1@ca ~]$ export

Last update: 2022/04/12 08:39 tutorial:adm:caw_driver https://wiki.czechidm.com/tutorial/adm/caw_driver

https://wiki.czechidm.com/ Printed on 2024/04/05 10:46

SOFTHSM2_CONF=/home/authority1/softhsm/softhsm2.conf

Now we simply call the softhsm2-util and initialize a new token. Please DO NOT use PINs6.
like 1234 or 123456 in the real world scenarios.

[authority1@ca ~]$ softhsm2-util --init-token --slot 0 --label
test_slot --pin 1234 --so-pin 123456

We can check, that new token object was created in the configured backend store.7.

[authority1@ca ~]$ find /home/authority1/softhsm/tokens/ -type f
/home/authority1/softhsm/tokens/ee48c4b2-
b28e-8c2d-7921-59236dda0866/token.lock
/home/authority1/softhsm/tokens/ee48c4b2-
b28e-8c2d-7921-59236dda0866/generation
/home/authority1/softhsm/tokens/ee48c4b2-
b28e-8c2d-7921-59236dda0866/token.object

SoftHSM is working! To use such configuration with CAW, edit the caw_settings.source8.
and append the export SOFTHSM2_CONF… line to it. This will make CAW use the configured
store. If you modified the system-wide config, you can skip this step.

From:
https://wiki.czechidm.com/ - CzechIdM Identity Manager

Permanent link:
https://wiki.czechidm.com/tutorial/adm/caw_driver

Last update: 2022/04/12 08:39

https://wiki.czechidm.com/
https://wiki.czechidm.com/tutorial/adm/caw_driver

	[The CAW driver]
	The CAW driver
	The CAW script
	Core functions
	Installation
	Examples
	Example of CAW driver configuration in Appliance
	Deconfiguring default PKCS11 engine
	Configuring CAW with the PKCS11 crypto token
	Using SoftHSM under non-root user

