
2024/03/09 12:27 1/7 Module - Preparing a new CzechIdM module

CzechIdM Identity Manager - https://wiki.czechidm.com/

Module - Preparing a new CzechIdM module

Basic application skeleton you can create by archetype, please follow this tutorial: Archetype tutorial.

CzechIdM is a modular application built by Maven. Modules often have really similar structure
consisting of:

Java source code
test suites
Groovy scripts
notification templates
Activiti workflow definitions
connector specific files (JDBC scripts etc.)
configuration files and maven profiles
database migration - Flyway configuration

In this tutorial we will describe the currently preferred way of setting up a CzechIdM module. Some
basic information about developing the module can be found also in the Developer Guide - Quickstart.

Java source code

The Java code typically handles all the business logic and heavy lifting in the application. There are
multiple areas of interest you will probably need while developing a module:

adding configuration properties
adding / removing event processors
defining EAV attributes
initialize application data
overriding synchronization

Keep all Java sources under src/main/java directory and keep package structure as
eu/bcvsolutions/idm/#your_module_name#.

Configuration properties

Setting default module configuration is crucial. The default configuration is loaded from the
application*.properties files, which will be discussed later. You can override the values in the
properties by defining you own props in the application, which get stored in the database and have
higher priority over the configuration files.

For accessing the properties, create a Spring bean extending the Configurable interface. See
example implementation of module configuration, or EmailerConfiguration and its implementation
DefaultEmailerConfiguration as an example. Creating a strongly typed configuration bean will give
you great flexibility - you can use whatever types you need without being forced to parse the props
from strings every time you need it.

https://github.com/bcvsolutions/idm-module-archetype/blob/develop/README.md
https://maven.apache.org/
https://wiki.czechidm.com/devel/dev/quickstart/backend
https://wiki.czechidm.com/devel/dev/architecture/events
https://wiki.czechidm.com/devel/dev/configuration/dynamic-forms
https://wiki.czechidm.com/devel/dev/configuration/backend
https://wiki.czechidm.com/devel/dev/quickstart/backend#configuration
https://github.com/bcvsolutions/CzechIdMng/blob/develop/Realization/backend/core/core-api/src/main/java/eu/bcvsolutions/idm/core/api/config/domain/EmailerConfiguration.java
https://github.com/bcvsolutions/CzechIdMng/blob/develop/Realization/backend/core/core-impl/src/main/java/eu/bcvsolutions/idm/core/config/domain/DefaultEmailerConfiguration.java

Last update: 2018/07/17 10:42 tutorial:dev:module_development https://wiki.czechidm.com/tutorial/dev/module_development

https://wiki.czechidm.com/ Printed on 2024/03/09 12:27

It is advised to keep the configuration logic in the config Java package.

Event processors

Event processors are a powerful mechanism in customizing your CzechIdM deployment. All major
entities, such as IdmIdentity, supports events. Use case example: sending notification to
administrator after an identity has been created:

define an IdmIdentityDto processor with priority greater than 0 (after the identity is saved)1.
set the processor to catch only IdentityEventType.CREATE events2.
sent notification in the process method3.

That's it. Without the need to modify any of the existing code or the core module we have modified
the behavior of the application.

This way you can alter entities processing, provisioning and many other cases.

Events also carry event properties. You can use such properties to cancel provisioning, for example,
by the following code:

SysProvisioningOperation op = event.getContent();
op.setResultState(OperationState.CANCELED);
provisioningOperationService.delete(op);
return new DefaultEventResult<>(event, this, true);

Turning modules on and off is also possible in runtime by configuration, see the CzechIdM wiki for
details.

It is advised to keep all processors in the event Java package and sub-packages.

EAV attributes

Extending entities in CzechIdM could be simply done by defining EAV attributes. These are referred by
plain String keys in the code, which may become troublesome for larger modules, simply because
magic values and restatements are generally a bad idea.

To keep EAV references type typo-safe, create a classic Java enum, which accepts two strings as
constructor params. Example:

public interface EavConstants {

 String getEavCode();

 PersistentType getPersistentType();
}

public enum MyIdentityConstants implements EavConstants {

https://wiki.czechidm.com/devel/dev/architecture/events
https://wiki.czechidm.com/devel/dev/configuration/dynamic-forms
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2024/03/09 12:27 3/7 Module - Preparing a new CzechIdM module

CzechIdM Identity Manager - https://wiki.czechidm.com/

 MY_CUSTOM_SOMETHING("myCustomSomethingEav", PersistentType.TEXT),
 MY_ATTRIBUTE("myAttrEavCode", PersistentType.TEXT);

 // fields
 private final String eavCode;
 private final PersistentType persistentType;

 MyIdentityConstants(String eavCode, PersistentType persistentType) {
 this.eavCode = eavCode;
 this.persistentType = persistentType;
 }

 @Override
 public String getEavCode() {
 return eavCode;
 }

 @Override
 public PersistentType getPersistentType() {
 return persistentType;
 }
}

With such setup you can reference all your module-specific EAVs as
MyIdentityConstants.MY_ATTRIBUTE. Another advantage of this approach is creating attribute
definitions on application startup.

It is advised to keep the the EAV attributes definitions in the constants Java package.

Initialize module data

To ensure our module is easily runnable even on the first time it's deployed, we need to initialize
module-specific data. That is done through Spring application event listener. This is highly
recommended at least for creating EAV attribute definition (+ beneficial for tests, which start with
empty database and we need to initialize the definitions somowhere). Following example show such
bean, which creates EAV definitions for our MyIdentityConstants enum and create a role for
notifications:

@Component
@DependsOn("initApplicationData")
public class InitMyModuleData implements
ApplicationListener<ContextRefreshedEvent> {

 @Autowired
 private SecurityService securityService;
 @Autowired
 private FormService formService;
 @Autowired
 private IdmRoleService roleService;

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+component

Last update: 2018/07/17 10:42 tutorial:dev:module_development https://wiki.czechidm.com/tutorial/dev/module_development

https://wiki.czechidm.com/ Printed on 2024/03/09 12:27

 @Autowired
 private MyConfiguration configuration;

 @Override
 public void onApplicationEvent(ContextRefreshedEvent event) {
 init();
 }

 public void init() {
 // system auth. to get full permissions
 securityService.setSystemAuthentication();
 //
 try {
 for (EavConstants extAttr : MyIdentityConstants.values()) {
 createEavAttribute(extAttr, IdmIdentity.class);
 }
 //
 final String organizationsEventRecipientRole =
configuration.getNotificationRoleName();
 IdmRole orgRecipientRole =
roleService.getByName(organizationsEventRecipientRole);
 if (orgRecipientRole == null) {
 orgRecipientRole = new IdmRole();
 orgRecipientRole.setCanBeRequested(true);
 orgRecipientRole.setDescription("Role holders receive
notifications about our use case.");
 orgRecipientRole.setDisabled(false);
 orgRecipientRole.setName(organizationsEventRecipientRole);
 orgRecipientRole.setPriority(1);
 orgRecipientRole.setRoleType(RoleType.SYSTEM);
 roleService.save(orgRecipientRole);
 }
 } finally {
 SecurityContextHolder.clearContext();
 }
 }

 private void createEavAttribute(EavConstants extAttr, Class<? extends
FormableEntity> clazz) {
 IdmFormAttribute retrieved = formService.getAttribute(clazz,
extAttr.getEavCode());
 if (retrieved != null) {
 return;
 }
 //
 IdmFormAttribute attr = new IdmFormAttribute();
 attr.setCode(extAttr.getEavCode());
 attr.setName(extAttr.getEavCode());
 attr.setPlaceholder(extAttr.getEavCode());
 attr.setPersistentType(extAttr.getPersistentType());
 formService.saveAttribute(clazz, attr);

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2024/03/09 12:27 5/7 Module - Preparing a new CzechIdM module

CzechIdM Identity Manager - https://wiki.czechidm.com/

 }

}

Setting up test suites

Generally, all base classes for testing your module should be available out-of-the-box in the czechidm-
test-api module, which you need to include as your module's dependency.

The only exception is for testing Activiti's workflows. For that reason, we need to create ActivitiRule
bean first. Create following bean under the test sources module directory:

@ActiveProfiles("test")
@Configuration
public class MyModuleTestConfiguration {

 @Bean
 public ActivitiRule activitiRule(ProcessEngine processEngine) {
 return new ActivitiRule(processEngine);
 }
}

In version 7.3 it is also necessary to have dependency on core-impl module and create a base class
for workflow testing. Following is a functioning example:

public abstract class AbstractMyModuleWorkflowIntegrationTest extends
AbstractWorkflowIntegrationTest {

 @Override
 public DefaultActivityBehaviorFactory getBehaviourFactory() {
 return new CustomActivityBehaviorFactory();
 }
}

With such setup you should be able to test Activiti workflows without any problems. For test example
please refer to HistoryProcessAndTaskTest.

Without this setup, all your workflow tests will deliberately fail.

Groovy scripts

Groovy scripts are used primarily as transformations while connecting end-point systems.

It is advised to keep all your custom scripts the src/main/resources/#package#/scripts directory of

https://github.com/bcvsolutions/CzechIdMng/blob/develop/Realization/backend/core/core-impl/src/test/java/eu/bcvsolutions/idm/core/workflow/history/HistoryProcessAndTaskTest.java
https://wiki.czechidm.com/faq/scripts/start

Last update: 2018/07/17 10:42 tutorial:dev:module_development https://wiki.czechidm.com/tutorial/dev/module_development

https://wiki.czechidm.com/ Printed on 2024/03/09 12:27

your module. Please do version the scripts, do not leave them only in the application! This is crucial
for maintenance and upgrade reasons. XML is now a preferred script format, see
IdmCoreGetFullName and IdmScript.xsd.

Notification templates

Keep notification templates in the src/main/resources/#package#/templates directory. For an
example of core template, see IdmCoreChangeIdentityRole and IdmNotificationTemplate.xsd.

Activiti workflows

Activiti workflows are typically kept in the src/main/resources/#package#/workflows directory.
Workflows are deployed and versioned automatically.

To test workflows, please see the Setting up test suites chapter.

Connector specific files

While connecting endpoint systems through scripted connectors (mostly), we have to either deploy
these scripts with CzechIdM or we just simple need to version these scripts. The preferred way is to
keep all connector scripts in the src/main/resources/#package#/scripts directory and sub-directories,
however use whatever works best for you.

Please do version the scripts, do not leave them only in the application or on the server file system!
This is crucial for maintenance and upgrade reasons.

For example of JDBC script development see the usage of Scripted SQL connector.

Database migration - Flyway configuration

Database migration (done by Flyway) is an important part of every db-backed application (module
here) maintenance. Each module has its own Flyway configuration. To setup yours, follow the guide in
wiki.

https://github.com/bcvsolutions/CzechIdMng/blob/develop/Realization/backend/core/core-impl/src/main/resources/eu/bcvsolutions/idm/scripts/IdmCoreGetFullName.xml
https://github.com/bcvsolutions/CzechIdMng/blob/develop/Realization/backend/core/core-impl/src/main/resources/eu/bcvsolutions/idm/scripts/IdmScript.xsd
https://wiki.czechidm.com/devel/dev/notification
https://github.com/bcvsolutions/CzechIdMng/blob/develop/Realization/backend/core/core-impl/src/main/resources/eu/bcvsolutions/idm/templates/IdmCoreChangeIdentityRole.xml
https://github.com/bcvsolutions/CzechIdMng/blob/develop/Realization/backend/core/core-impl/src/main/resources/eu/bcvsolutions/idm/templates/IdmNotificationTemplate.xsd
https://wiki.czechidm.com/devel/dev/workflow
https://wiki.czechidm.com/7.3/dev/system/scripted-jdbc-connector
https://flywaydb.org/
https://wiki.czechidm.com/7.3/dev/architecture/flyway
https://wiki.czechidm.com/7.3/dev/architecture/flyway

2024/03/09 12:27 7/7 Module - Preparing a new CzechIdM module

CzechIdM Identity Manager - https://wiki.czechidm.com/

From:
https://wiki.czechidm.com/ - CzechIdM Identity Manager

Permanent link:
https://wiki.czechidm.com/tutorial/dev/module_development

Last update: 2018/07/17 10:42

https://wiki.czechidm.com/
https://wiki.czechidm.com/tutorial/dev/module_development

	Module - Preparing a new CzechIdM module
	Java source code
	Configuration properties
	Event processors
	EAV attributes
	Initialize module data

	Setting up test suites
	Groovy scripts
	Notification templates
	Activiti workflows
	Connector specific files
	Database migration - Flyway configuration

